Ensure 5G Network Deployments－Site Acceptance， Optimization and Benchmarking

Jason Yao
Technical Manager of Eagletek

いいいいいlいいいい
Th TECHSOLOGIES

Agenda

Introduction to 5G network deployment

Network deployment process

Network deployment configurations

Acceptance testing

Introduction to 5G Network Deployment

Single Site Verification and Cluster Tuning are Critical Aspects of 5G Network Deployments

Frequency Range and Spectrum Availability Dictates Deployment Configurations

Spectrum Strategy Example- Dynamic Spectrum Sharing

- First 5G spectrum deployments were in 3.5 GHz bands for capacity, and low bands (700 MHz) for coverage, eventually with LTE refarming
- Low-band LTE refarming enables CA between NR in 3.5 GHz and NR in low bands
- 800 MHz is normally left for coverage and VoLTE
- In a second phase, the refarming of 3G 2100 MHz for LTE would leave 900 MHz only for 2G/3G
- 2G switch off depends on M2M utilization
- Next step would be a gradual introduction of

Dynamic Spectrum Sharing in the LTE Bands between $1800-2600 \mathrm{MHz}$

MHz

3500		$5 G$	$5 G$
2600	LTE	LTE	
2100	$3 G+$ LTE	LTE	LTE/5G
$\mathbf{1 8 0 0}$	LTE	LTE	
900	$2 G+3 G$	$2 G+3 G$	
800	LTE	LTE	LTE
700		LTE/5G	LTE/5G

Acceptance Testing

User Experience

Key to Success: Defining Acceptance Criteria Based on

Per cell Stationary tests:

- Beam coverage validation
- Peak throughputs
- Latency
- MIMO related issues
- Modulation
- Rank
- LTE + NR bearer utilization
- RACH

Inter-site mobility tests:

- Inter-site handover success
- Handover interruption time
- Cell coverage footprint validation
- Average throughput
- RACH

Intra-site mobility tests:

- Intra-site handovers success
- Handover interruption time
- RACH

Quantifying User Experience is Key

Acceptance Criteria - Focus on Beams

- Coverage

- SS-RSRP -98dBm used as out-of-coverage threshold to filter all other results
- Mobility
- Successful handovers - clockwise and counterclockwise
- Handover interruption time

Nemo Analyze 5G acceptance report with SSB Beam check

Beam Coverage Validation Requires 3D Measurements and Visualization

- Beam patterns may be 3-dimensional verification requires 3D measurements

Mobility Testing: NR in Lower Band Increases Complexity

Mobility Testing: NR - LTE Pre-Defined Band Combinations Poses Coverage Challenges

Scanner Measurements Capture SSB From Multiple Cells

Inter-Site Beam Pollution Increases Interference

Number of beams above coverage threshold by location

Number of Strong Beams

Number of beams above coverage threshold and within 5 dB of best server

Various Test Cases Required to Validate Throughput Performance

Config	Customer/test case	Peak rate DL (NR only)	Avg rate DL (NR only)	Avg rate UL (NR only)
100 MHz BW, Rank 4, 256QAM, FR1	MNO1 cell centre	1.2 Gbps	800Mbps	195Mbps
100MHz BW, Rank 4, 256QAM, FR1	MNO1 cell mid range	700Mbps	500 Mbps	90Mbps
100MHz BW, Rank 4 , 256QAM, FR1	MNO1 cell edge	400Mbps	350 Mbps	50 Mbs
60MHz BW, Rank 4, 256QAM, FR2, MUMIMO LTE in use	MNO2	900Mbps (1600Mbps LTE + NR ($60 \mathrm{MHz}+60 \mathrm{MHz}$))		
100 MHz BW, Rank 4, 256QAM, FR1	Nemo test Sep 2019, Elisa live NW, Huawei infra, Nemo Handy on Oneplus Pro 5G	736Mbps		

Acceptance Criteria - Latency Examples From The Field

LATENCY, EMBB USE CASE

Initial acceptance tests latency is tested as E2E round trip with ping.

Criteria	Max E2E Latency
NGNM 200km between NR node and EPC/NGCore	$10-15 \mathrm{~ms}$
MNO1 cell centre	10 ms
MNO1 cell mid range	13 ms
MNO1 cell edge	15 ms
MNO2	75 ms
Nemo test, Elisa live NW, Huawei infra, OnePlus Pro 5G Nemo Handy	15 ms

VoLTE/NR Concurrency: Measure and Ensure VoLTE Does Not Interrupt 5G

Operator 1: Loss of 5 G due to VoLTE call

Source: Huawei Operator 2: VoLTE - NR concurrency

VoNR: Similar to CSFB, EPS Fallback Needs Validation

IMS call EPS FB - Redirection

IMS call EPS FB - HO

5G Indoor Testing: Site Location Planning and Baselining Ensure Good Coverage

- $\mathrm{FR} 1=3.5 \mathrm{GHz}$
- $\mathrm{FR} 2=28 \mathrm{GHz}$
- Both FR1 and FR2 gNB antenna in the same location, same direction, see picture
- gNB Tx power configuration
- FR1 total TX power: 1W
- FR2 total TX power: 2W
- FR1 BW: 100 MHz , FR2 BW: $4 \times 100 \mathrm{MHz}$
- \rightarrow SS-RS TX power ~-2dBm for both FR1 and FR2
- Measurement devices
- HBFlex scanner
- WNC router with Speedtest.net download active tests

5G Test Seminar

5G Indoor Test: Measurements With Active Beamforming are Required for Optimization

FR1: SS-RSRP Best

FR2: SS-RSRP Best

Benchmarking: Segue to Post-Launch Optimization

Summary

Introduction to 5G network deployment

Network deployment process

Network deployment configurations

Acceptance testing

Keysight Nemo Test and Measurement Products

Thank You!

Resources:

Finding Nemo: https://www.keysight.com/en/pc-2767981/nemo-wireless-network-solutions?cc=US\&Ic=eng
Understand the quality and performance of your live 5G NR network with Keysight's Nemo solutions: https://youtu.be/nPlpSKMiKjw
Taking 5G network testing to another level with Nemo Handy and Nokia drone: https://youtu.be/l4Q4VaNz5SE
5G NR SA Field Measurements with Nemo Outdoor: https://youtu.be/5UehEPUOeSA

Appendix

ACRONYMS

CSI-RS (DL): Channel state information reference signal
CP: Control plane
CSFB: Circuit switched fallback
DL: Downlink
EPS: Evolved Packet System
eNB: LTE base station
ENDC: E-UTRAN NR dual connectivity
gNB: 5G base station
MIB: Master information block
MIMO: Multiple input multiple output
MR: Measurement report
MR-DC: Multi radio dual connectivity
NR: New Radio
NSA: Non-standalone

PBCH DMRS: PBCH demodulation reference signal
PBCH: Primary broadcast channel
PDSCH: Physical downlink shared channel
PSS: Primary synchronization signal
RACH: Random access channel
RRC: Radio resource control
SRS (UL): Sounding reference signal
SSS: Secondary synchronization signal
TRS: Tracking reference signal
CPE: Customer premise equipment
UE: User equipment
UL: Uplink
UP: User plane
VoLTE: Voice over LTE

M KEYSIGHT TECHNOLOGIES

