Improve Measurement Integrity for RF and Microwave Wideband Signals

Eric Hsu

Product Marketing / Keysight Technologies

......

New Applications Are Driving New Requirements

DRIVEN BY DEMAND FOR DATA

Enabling Next-Generation Broadband Access

TEST AND MEASUREMENT MUST KEEP PACE

Design and Measurement Challenges

WIDER BANDWIDTHS AT HIGHER FREQUENCIES

Result of Frequency Increases

PATH LOSS INCREASES

- insertion loss of cables and accessories
- free space path loss (FSPL) in dB

 $FSPL(dB) = 20 * \log_{10}(\mathbf{d}) + 20 * \log_{10}(\mathbf{f}) + 20 * \log_{10}\frac{4\pi}{c}$

d: distance between the antennas in units of kmf: carrier frequency in units of GHzc: speed of light

How to Overcome Insertion and Propagation Losses

SIGNAL GENERATION

• use a signal generator with high output power

• use a remote radio head to reduce path loss

Higher Frequencies and Wider Bandwidths

RESULT: A LOWER SNR FOR SIGNAL ANALYSIS

SNR: signal-to-noise ratio ACPR: adjacent channel power ratio

Achieve the Best EVM Measurement Results

OPTIMIZE SIGNAL CONDITIONING

Design and Measurement Challenges

WIDER BANDWIDTHS AT HIGHER FREQUENCIES

Result of Frequency Increases

PHASE NOISE INCREASES

- Main contributors to phase noise
 - thermal noise
 - flicker noise (1/f)

Importance of Phase Noise

TEST NEEDS

Importance of Phase Noise – OFDM

INTERSYMBOL INTERFERENCE

	Sub-carrier spacing	
IEEE 802.11ac	312.5 kHz	
IEEE 802.11ax	78.125 kHz	
LTE / LTE-A	7.5, 15 kHz	
5G New Radio	15, 30, 60, 120, 240, 480 kHz	

Choose and Optimize Phase Noise Performance

SIGNAL GENERATION

choose a signal generator with ultra-low phase noise

- optimize phase noise at different offsets
 - apply external references (reference section)
 - use built-in adjustments
 - adjust reference oscillator bandwidth (reference section)
 - adjust the PLL bandwidth (synthesizer section)

Choose and Optimize Phase Noise Performance

SIGNAL ANALYSIS

• Choose a signal analyzer with ultra-low phase noise.

- Optimize phase noise at different offsets for your test applications:
 - apply external references (reference section)
 - use built-in adjustments
 - close-in
 - wide offset
 - fast tuning

Phase Noise Optimization

SIGNAL ANALYSIS

OPTIMIZE

Phase noise optimization provides various phase noise behaviors for different operating conditions.

Actual behavior varies, depending on the Keysight model number and option.

Design and Measurement Challenges

WIDE BANDWIDTHS AT HIGHER FREQUENCIES

Solutions for Wide Bandwidth Signal Generation

Specification	M8190A and E8267D	S9100A	M9384B or M9383B
Frequency	Up to 44 GHz	< 6 GHz; 24.25 to 43.5 GHz	Up to 44 GHz
Max. RF bandwidth	4 GHz	1.2 GHz	2 GHz
Output power (CW)	+19 dBm (at 40 GHz)	+10 dBm (at 40 GHz)	+18 dBm (at 40 GHz)
Modulation quality	Excellent	Good	Excellent
System calibration	Required	Required	Calibrated
Number of channel	1	Up to 8	Up to 2
Application	Versatile capabilities for advanced research	Lowers cost of test and high- throughput for high-volume test	Optimal performance and test features for R&D and DVT

Frequency Responses – Outside the Signal Generator

SIGNAL WITH WIDER BANDWIDTHS AND HIGHER FREQUENCIES

Why Frequency Response is Important

AMPLITUDE AND PHASE RESPONSES

Signal analyzer setup Modulation: 64-QAM Symbol rate: 100 MHz Baseband filter: RRC

Remove Frequency Responses for Signal Generation

USING THE DE-EMBEDDING METHOD

Corrections / De-embedding

SIGNAL GENERATION

Add from measurements

- Measure corrections with block wizard:
 - 1. connect test equipment
 - 2. configure power meter / signal analyzer
 - start / stop frequencies, number of steps, amplitude
 - 3. measure corrections

Add from files

- Import and cascade the correction files:
 - download measured correction data (.ulflat)
 - receive file in CSV format
 - download .s2p file

Apply Correction Filter to the Baseband Waveform

REMOVE EXTERNAL FREQUENCY RESPONSES

Frequency responses occur at different frequencies and output levels, and include amplitude and phase responses.

KEYSIGHT TECHNOLOGIES

Remove Frequency Responses

SIGNAL ANALYSIS

Channel response of magnitudes and phases

Use a signal generator and power sensor for power corrections.

Use a vector network analyzer for complex corrections.

Use Keysight U9361 receiver calibrator (RCal) for complex corrections.

Design and Measurement Challenges

WIDER BANDWIDTHS AT HIGHER FREQUENCIES

I/Q Modulator Imperfections

I/Q Mismatch Errors

AMPLITUDE, TIMING, AND PHASE ERRORS

G

I/Q Origin Offset

I/Q origin offset (carrier feedthrough)

Possible design issues:

- RF carrier feedthrough
- baseband DC offset

B: Ch1 QPSK Syms/Er	тз 🔻			. ×
EVM = 996.96	m%rms	1.9129	% pk at sy	m 36
Mag Err = 777.73	m%rms	-1.9108	% pk at sy	m 36
Phase Err = 357.08	mdeg	-819.31 mo	deg pk at sy	m 50
Freq Err = -5.0705	Hz	SNR (MER)	= 40.026	dB
IQ Offset = -22.379	dB	Rho	= 0.99415	
Quad Err = 148.06	mdeg	Gain Imb	= -0.007	dB
0 00000110	00010011	00111000	11011010	10101111
40 00111110	11010100	00111110	10110110 (01100110
80 10101110	01000111	01000100	01100011 (01001100
120 10000001	00110010	10100100	11011010	10111010
160 11011110	11010001	01111000	11000111	00111000

When demodulating a signal with an I/Q origin offset, the constellation diagram will shift the new origin to the center and report the I/Q offset (in dB) in the error summary table.

Baseband I/Q Adjustments

EFFECTS AND IMPAIRMENTS

I/Q adjustment	Effect	Impairment
Offset	Carrier feedthrough	DC offset
Quadrature angle	Error vector magnitude (EVM) error	Phase skew
	I/Q images	I/Q path delay
Timing skew		High sample rate phase skew
		I/Q path delay
Gain imbalance	I/Q amplitude difference	I/Q gain ratio

Baseband I/Q Adjustments

INTERNAL BASEBAND GENERATOR

TECHNOLOGIES

ADJUST

Baseband I/Q

adjustments:

signals

tolerance

• compensate I/Q

simulate the real

evaluate DUT's

modulator's errors

I/Q Calibration (Alignment)

DRIFT RELATED TO TEMPERATURE CHANGES

- DC: I/Q offset, gain and quadrature error
- skew: timing skew

KEYSIGH1

ECHNOLOGIES

Perform Alignment

Perform Alignment

Skew Alignment

Clear Alignment

Clear Alignment

Improve Measurement Integrity

- Increasing demand for wider bandwidths to support nextgeneration wireless standards.
- Design and measurement challenges for wider bandwidths at high frequencies:
 - excessive path loss
 - higher phase noise
 - irregular frequency responses
 - significant modulator impairments

KEYSIGHT TECHNOLOGIES

- Improve Test Integrity for RF and Microwave Signal Generation White Paper
- <u>4 tips for 5G NR signal analysis</u> White Paper
- <u>4 Tips for 5G New Radio (5G NR) Signal Creation</u> White Paper
- 3 Best Practices for Optimizing EVM Measurements for Wideband Signal White Paper
- <u>Understanding Phase Noise Needs and Choices in Signal Generation</u> Application Note
- <u>I/Q Modulation Considerations for PSG Vector Signal Generators</u> Application Note

