GaN ASM-HEMT Modeling & Verification Workshop

CHEN, Jason

2020.04.21

Application Engineer

1.02411

Agenda

- Quick Start for IC-CAP
- Introduction to ASM-HEMT Model
- Introduction to CMC Modeling Kit (ASM-HEMT) in IC-CAP
- Export Model to ADS for Load-pull Simulation

Quick Start for IC-CAP

What is PATHWAVE Device Modeling : IC-CAP

Integrated Circuit Characterization and Analysis Program

- Integrate measurement and modeling on the same platform
- Support various simulators and python script
- Support customized GUI and extraction flow
- Suitable for highly customized modeling, such as RF and Power devices

Device Modeling (IC-CAP)

Device Characterization and Modeling Software (2020 Update 2)

© Keysight Technologies 1983-2019

IC-CAP Measurement System

IC-CAP System Organization

Typical Modeling Flow

How Measurement Works

How Simulation Works

Introduction to ASM-HEMT Model

ADVANCED SPICE MODEL FOR HEMT

GaN HEMT Devices

HOW DOES A GAN DEVICE WORK?

- Difference between Al_xGa_{1-x}N and GaN spontaneous polarization (P_{SP}) creates a sheet charge at the interface.
- Difference in lattice constants leads to mechanical strain and piezoelectric effect (P_{PE})

- quantum well at the heterojunction interface →
 2 Dimensional Electron Gas (2-DEG)
 - very high mobility
 - Low resistance

ASM-HEMT Model Overview

Advantages of Surface Potential-based Model

- Better Model Scalability L, W, NF, Lsg, Ldg, Temperature etc.
- Better Temperature Scalability
- Device Insight
- Better Statistical Behavior
- Accurate Charges and Capacitances
- Less number of parameters Easier parameter extraction
- Uses a single expression for all regions Faster convergence, smooth derivatives
- Inherent Model Symmetry and Continuity

Core Model & Parameters

Real Device Effects Incorporated into the Model

Core Model Parameters

Parameter	Description	Extracted Value
V _{OFF}	Cutoff Voltage	-2.86 V
N _{FACTOR}	Subthreshold Slope Factor	0.202
C_{DSCD}	SS Degradation Factor	$0.325 V^{-1}$
${\eta}_0$	DIBL Parameter	0.117
U ₀	Low Field Mobility	33.29 mm²/Vs
N _{S0ACCS}	AR 2DEG Density	$1.9e + 17 / m^2$
V _{SATACCS}	AR saturation velocity	157.6e + 3 cm/s
R_{TH0}	Thermal Resistance	22 Ω

Core drain current expression

$$I_{ds} = \frac{\mu_{eff}}{\sqrt{1 + \theta_{sat}^2 \psi_{ds}^2}} \frac{W}{L} C_g N_f \left[V_{go} - \left(\frac{\psi_s + \psi_d}{2}\right) + V_{th} \right] \times \psi_{ds} (\psi_s + \psi_d) + V_{th}$$

Extraction from Id-Vg curves

Start with $I_d - V_g$ characteristics in the <u>log scale</u>

ETA0 – DIBL Parameter

NFACTOR – Sub-threshold slope parameter

CDSCD – Captures the drain voltage dependence on the sub-threshold slope.

VOFF – Cut-Off Voltage

 $I_d - V_g$ characteristics in the <u>linear scale</u>

U0 – Low field mobility

UA, UB – Mobility degradation parameters

Extraction from Id-Vd curves

 $I_d - V_d$ characteristics

- *VSAT* Velocity saturation parameter
- **UA**, **UB** Mobility degradation parameters

Access Region Parameters extracted from I_d – V_d characteristics:

- NSOACCS(D) 2DEG density in the access region.
- **VSATACCS** Saturation velocity in the access region.
- UOACCS(D) Low field mobility in the access region.

U0ACCS(D) independently tunes the access region resistance around $V_{ds} = 0$ and helps extract g_{ds} at that point.

Parameter Extraction – Self Heating

$I_d - V_d$ characteristics – <u>Self Heating Parameters</u>

- *RTHO* Self heating resistance.
 - Decides the rate of temperature increase with increasing current.

Temperature dependence parameters to observe the effects of the temperature increase on IV characteristics:

- *UTE* Temperature dependence of mobility
- *AT* Temperature Dependence for saturation velocity

Nonlinear source/drain access region resistance model

$$I_{acc} = Q_{acc} \cdot v_s = Q_{acc} \cdot v_{sat} \cdot \frac{V_R / V_{Rsat}}{\left[1 + \left(\frac{V_R}{V_{Rsat}}\right)^{\gamma}\right]^{\frac{1}{\gamma}}}$$

 $\frac{V_R}{I_{acc}} = \frac{R_{d0/s0}}{\left[1 - \left(\underline{I_d}\right)^{\gamma}\right]^{\frac{1}{\gamma}}}$

Nonlinear variation of source/ drain access resistances with Ids.

$$I_{\rm ds,acc} = \frac{R_{\rm c}}{W \cdot N_{\rm f}} + \frac{L_{\rm acc}}{W \cdot N_{\rm f} \cdot q \cdot N_{\rm S0ACCS} \cdot U_{\rm 0ACCS}} \times \left(1 - \left(\frac{I_{\rm ds}}{W \cdot N_{\rm f} \cdot N_{\rm S0ACCS} \cdot V_{\rm SATACCS}}\right)^2\right)^{-1/2}$$

 $R_{d/s}$

R_{d/s} **Model – Effects on Transconductance g**_m

Source: Prof. Yogesh Chauhan

Modeling of Temperature dependence

 $\mathbf{R}_{d/s}$ increases significantly with increasing temperature

Temperature dependence of 2-DEG charge density in the drain or source side access region:

$$n_{s0}(T) = NS0ACC \cdot \left(1 - KNS0 \cdot \left(\frac{T}{TNOM} - 1\right)\right)$$

Temperature dependence of Saturation Velocity:

$$V_{sat}(T) = VSATACCS \cdot [1 + ATS(T - TNOM)]$$

Temperature dependence of electron Mobility:

$$\mu_{acc}(T) = U0ACC \cdot \left(\frac{T}{TNOM}\right)^{UTEACC}$$

Modeling of Field-Plates in HEMTs

Affects capacitance and breakdown behavior.

Field-Plate Capacitance Modeling

Source: Prof. Yogesh Chauhan

Current Collapse

On-state current temporarily reduced following off-state stress

- Also known as dynamic R_{on}
 - On-state resistance depends on recent history of device biasing

Stephen Sque - ESSDERC tutorial Sept. 2013

Pulsed IV Measurements

Gate-lag

- Vdq = 0V
- Vgq = Deep OFF condition:

A strong field through the AlGaN layer. No field through buffer (since Vds = 0). Only surface traps activated.

Drain-lag

• Vdq = A significantly positive voltage

• Vgq = Deep OFF condition:

A strong field through the AlGaN layer as well as the buffer. Both surface and buffer traps activated.

R_{ON} Collapse:

Trapping reduces the 2DEG concentration and leads to an increased on-state resistance.

Trap Model

1_{trap1}

TRAPMOD=2

trap2

V_{trap1}

C_{trap1}

R_{trap1}

 V_{trap2}

trap2

R_{trap2}

Pulsed-IV Scheme used to simulate the P-IV Characteristics in IC-CAP

Other Trap Models in ASM-HEMT

V_{trap} is then used to tune:

- Cut-off voltage
- DIBL
- Source and drain access resistances

TRAPMOD=3

A single sub-circuit to capture the dependence on both V_g and V_d by using V_{gd} instead of V_{gs} and V_{ds} separately.

- V_{trap} is used to model the V_{gd} dependence on just the drain-side access region resistance.
- Recommended for modeling the GaN power device dynamic ON-resistance.
- An empirical temperature dependence is also included.

Trap Model

The trap model accurately captures Dynamic-R_{ON} and knee walkout.

Pulsed - IV chacteristics for multiple quiescent conditions

Knee walkout \rightarrow linearity and efficiency

Pulse Width – 200 ns, Duty-cycle 0.02 %

Model •

GMF

Overlap

Extrinsic

Manifolds

g

- Core surface potential based PDK
- Access region resistances included in core ٠

 d_i

• *dt*

S_i

 L_{xs} g

SMF

S

Bus-inductances in extrinsics •

 L_{xq}

- Three step methodology
 - De-embed manifolds
 - Extract the intrinsic core model Using low frequency Y-parameters
 - Extract Inductances Using high frequency Y-parameters

Three step methodology

- 1. De-embed manifolds
- 2. Extract the intrinsic core model Using low frequency Y-parameters
- 3. Extract Inductances Using high frequency Y-

parameters

$$\begin{split} Y_{11} &= \frac{\omega^2 C_{gg}^2 R_g}{1 + \omega^2 C_{gg}^2 R_g^2} + \frac{j\omega C_{gg}}{1 + \omega^2 C_{gg}^2 R_g^2} \\ Y_{12} &= -\frac{\omega^2 C_{gd} C_{gg} R_g}{1 + \omega^2 C_{gg}^2 R_g^2} - \frac{j\omega C_{gd}}{1 + \omega^2 C_{gg}^2 R_g^2} \\ Y_{21} &= \frac{g_m - \omega^2 C_{gd} C_{gg} R_g}{1 + \omega^2 C_{gg}^2 R_g^2} - \frac{j\omega (C_{gd} + g_m C_{gg} R_g)}{1 + \omega^2 C_{gg}^2 R_g^2} \\ Y_{22} &= g_{ds} + \frac{\omega^2 (C_{gs} C_{gd} R_g + R_g C_{gd} C_{gg} (1 + g_m R_g))}{1 + \omega^2 C_{gg}^2 R_g^2} \\ + j\omega C_{ds} + \frac{j\omega C_{gd} (1 + g_m R_g) + j\omega^3 C_{gs} C_{gd} C_{gg} R_g^2}{1 + \omega^2 C_{gg}^2 R_g^2} \end{split}$$

- The effect of bus-inductances is ignored at low frequencies (assumption)
- Drain & Source access region resistances ignored from hand analysis (not an assumption, it is an advantage)
- Ignore some terms at low frequency (~ 10 GHz) (assumption)
- Very simple only need to adjust overlap capacitances & gate finger resistances (advantage)

$$\begin{split} \left[\mathbf{Y}\right] &\approx \begin{bmatrix} \omega^2 C_{gg}^{-2} R_g + j\omega C_{gg} & -\omega^2 C_{gd} C_{gg} R_g - j\omega C_{gd} \\ g_m - j\omega \left(C_{gd} + g_m C_{gg} R_g\right) & g_{ds} + j\omega \left(C_{ds} + C_{gd} (1 + g_m R_g)\right) \end{bmatrix} \\ & \begin{bmatrix} C_{gs} & C_{gd} & C_{ds} \\ g_m & g_{ds} & R_g \end{bmatrix} \\ & & & & & \\ & & & \\ \begin{bmatrix} \left(\operatorname{Im}[Y_{11}] + \operatorname{Im}[Y_{12}]\right)/\omega & -\operatorname{Im}[Y_{12}]/\omega & \operatorname{Im}[Y_{22}]/\omega - C_{gd} \left(1 + g_m R_g\right) \\ & & & \\ \operatorname{Re}[Y_{21}] & \operatorname{Re}[Y_{22}] & \operatorname{Re}[Y_{11}]/\left(\omega^2 C_{gg}^2\right) \end{bmatrix} \end{split}$$

[1] I. Kwon et al., IEEE Trans. Microw. Theory Techn., 50 (6), [2002]

Source: Prof. Yogesh Chauhan

[1]

33

Introduction to CMC Modeling Kit (ASM-HEMT) in IC-CAP

Open Example Model Files

ASM-HEMT

File Edit Measure Extract Simulate Optimize Data Tools Macros Windows Help 🛁 Ø 🖲 🐂 🚝 🗞 🎇 🐼 📥 🐻 Ø DUT Parameters DUT Variables ; Begin your work in Setup INITIALIZE Status: Execute Transform Mdlg_All Complete

Х

Model Circuit and Parameters

ASM_HEMT_MODELING: (/ASM_HEMT_MODELING/INITIALIZE is Active):2 -	× uit Model Parameters	Model Variables Macr	OS		
File Edit Measure Extract Simulate Optimize Data Tools Macros Windows Help	Parameter Groups				
🖆 🔚 🤊 X Là Là 👎 帰 🔛 ≟ 💋 🛞 帰 篇 微 職 🚳 📥 🚟 🏈	All Parameters	Search	Show All		
DUTs-Setups Circuit Model Parameters Model Variables Macros	DC_GateCurrent	Param Name	Ain Opt Min Value	Opt Max Max	M ^
27 :	DC_idvg_lin	RTOTALPORT1	400.0m		
28	DC_idvg_sat	RTOTALPORT2	400.0m		
Import Text 29 ;external Resistances for ASM HEMT model	DC_idvd	R SOURCE	50.00		
30 R:RS S S1 R=1m	ext_resistors	R LOAD	50.00		
32 R:RD D Di R=1m	int_resistors	X LOND	0.000		
33 ;external Inductances for ASM HEMT model	Temp_DC	X_LOAD	0.000		
34 L:LS Si Sii L=1p	Temp_int_resist	CTERM_PI	1.000a		
35 L:LG GI GII L=1p	Spar_Coverlap	LTERM_P1	1.000f		
37	Spar_Cfringing	CTERM_P2	1.000a		
38 C:Cp11 G S C=1f	Spar_Cdepletion	LTERM P2	1.000f		
39 C:Cp22 D S C=1f	Spar_BiasDependency	RS.R	1.000m		
40 C:Cp12 G D C=11 41	Temp_Spar	RG.R	1.000m		
42 MAIN:Q1 Dii Gii Sii B DT	TrapMod1	RD R	1 000m		
43	TrapMod2	TOT	2.475p		
44 ; model name: asmhemt_1_0_1	TrapMod3	10.1	11.70-		
45 46 model MAIN asmbemt 1 0 1	FieldPlate1	LG.Г	11.72p		
47 thom =27.0 \	FieldPlate2	LD.L	100.3f		
48 shmod =1 \	FieldPlate3	Cp11.C	1.000f		
49 gatemod =1	FieldPlate4	Cp22.C	140.0f		
50 rasinoa $=0$ 1	Quantum	Cp12.C	8.000f		
52 trapmod =0 \	Ungrouped	MAIN.TNOM	25.00		
53 fplmod =0		MATN, SHMOD	1.000		
54 fp2mod = 0		MAIN GATEMOD	1 000		
56 fp4mod =0 \		MAIN. BREMOD	1.000		
57 fnmod =0 \		MAIN.RDSMOD	1.000		
58 tnmod =0		MAIN.RGATEMOD	1.000		
59 1 = 0.25e-6		MAIN.TRAPMOD	0.000		
-200.00-0		MAIN.FP1MOD	0.000		
62 ngcon =1		MAIN.FP2MOD	0.000		
63 xgw =0 \		MAIN.FP3MOD	0.000		
$64 \text{ lsg} = 1.0e-6 \land$		MAIN, FP4MOD	0.000		~
03 Tug =1.0e-0 \	× ×	<			>
Active Seture: ZASM_HEMT_MODELING/INITTALIZE Status: Execute Transform Mdia_All_Complete					

Initialize Modeling

DUTs-Setups	Circuit	Circuit Model Parameters Model Variables Macros							
Select DUT/Setu	р								
_DeviceA	_5053_8x1	00_ 0	^	M	leasure / Simul	ate	Instrume	nt Options	Set
✓ INITIALIZ	Ē				Execute	Se	lect Transfor	m:	
READ	ME_FIRST					R	EADME_FIR	ST	
LOAD	_MEAS_D/	ATA			Tune Fast	IN	IT_MODEL	ING	
PROJE	CT_NAMI	NG			Tune Slow			1	
DEFIN	E_WORK_	DIR			Functions		optional		_
INIT_N	NODELING	3			Tuncuons	C	ompare_wi	th_Previou	s

CHECK THE SETTINGS × TEMPERATURE Image: Check the setting the se

INSTANCE PARAMETERS ========

(Channel Length)	W (Channel Width)	NF (Number Fingers)	NGCON (Number Gate Contacts)
150.0n	100.0u	8.000	1.000
LDG (Length of	LSG (Length of	XGW	TBAR
Drain-Gate Access Region)	Source-Gate Access Region)	(Distance Gate->Dev.Edge)	(Barrier Layer Thickness)
Default: 1u	Default: 1u	Default: 0	Default: 25n
1.700u	1.000u	5.531u	11.40n

MODEL SWITCHES ======	======			
RGATEMOD: External (0)	RDSMOD: External (0)	SHMOD [0,1]	GATEMOD [0,1]	TRAPMOD [0,1,2,3]
or Internal (1)	or Internal (1)	(Self Heating off/on)	(Gate Current Modeling off/on)	(Dyn.Trapping off/selection)
Recommended: 1	Recommended: 1	Recommended: 1	Recommended: 1	Default: 0
1.000	1.000	1.000	1.000	0.000
	, <u> </u>			

FIELD PLATE SWITCHES ========================= FP1MOD [0,1,2] FP2MOD [0,1,2] FP4MOD [0,1,2]

(Filed Plate Model1 off/selection) .	(Filed Plate Model2 off/selection) .	(Filed Plate Model3 off/selection) .	(Filed Plate Mode4 off/selection) .
Default: 0	Default: 0	Default: 0	Default: 0
0.000	0.000	0.000	

Port1 Contact Loss incl. Spar Testset 400.0m	Port2 Contact Loss incl. Spar Testset 400.0m	Enter if already known, or apply later the Setups of DUT 'CONTACT_RESISTANCES'			
	Check .	mdm File Header for TEMP, TNOM, Rcontact etc.			
The meet important 1 st step	for guarantill device modelin	a is to report the model personators to default values			
(switch them 'off'). This mea	ins that after the first model pa	arameters have been extracted, the simulation will only	Reset Model Parameters		
show the effect of these new parameters, AND NOT their effect overlaid by the still active parameters of the last modeling. Set Parameter Limit			Set Parameter Limits		
-> hit 'Set Parameter Limits'	ers, and then				

Load Data for Modeling

Se

Manager (Circulate	
Measure / Simulate	Instrument Options
Execute	elect Transform:
Tune Fast	HELP_HOW2USE
Tune Slow	' Clear_meas_data
Functions	CLEAN_UP_SetupVars
	OAD_MEAS_DATA
New	ZERIFY_MEAS_BIASES
Import Text	2 _aux
View	gui_Show_Biasings
Rename	gui_ShowPlotAreaTools
	Execute S Tune Fast Tune Slow Functions

prefix Dut name Setup name _DeviceA_5053_8x100~DC_MODELING~ig_vgs__Input IMPORT DATA X Selected .mdm data dir: //cygdrive/c/Users/cheschen/Desktop/RF_GaN_Modeling/iccap/data/DeviceA_8x100/Avail_Meas_Data/Data_for_Modeling Change Dir HELP: Filename Wildcard File Suffix OK, Done Deselect all DUTs Apply To manually load mdm files, first select DUT(s) from 'available Duts', .mdm then click into the first Setup in 'available DUT/Setups', Clear all Meas. Data in Modelfile and select the corresponding .mdm file from 'avail. mdm files'. View .mdm Header Only, no Data Import Click here, if mdm files are named Prefix~DutName~SetupName.mdm (no Dut/Setup and no mdm file selection is required) Help Load Automatically available DUTs available DUT/Setups mdm file loaded during this GUI session . avail. mdm files status ∧ CONTACT_RESISTANCES/DC_Meas_R ∧ ▲ DeviceA_5053_8x100~CONTACT_RESISTAL ▲ DeviceA 5053 8x100 CONTACT RESISTANCES/DC Meas R DeviceA 5053 8x100~CONTACT RESISTAL INITIALIZE DC_MODELING_vt_u0/id_vgs__Transfer _DeviceA_5053_8x100~CV_Modeling_init~: CV_Modeling_init/spar_cap_vg_vd1 _DeviceA_5053_8x100~CV_Modeling~spar CONTACT RESISTANCES R L Subcircuit/Spar bias DeviceA 5053 8x100~CV Modeling~spar R L Subcircuit/Spar sub _DeviceA_5053_8x100~CV_Modeling~spar DC MODELING vt u0 DC MODELING/ig vgs Input DeviceA 5053 8x100~CV Modeling~spar CV Modeling init DC_MODELING/id_vgs_Transfer_lin _DeviceA_5053_8x100~DC_MODELING_vt_L R_L_Subcircuit DC_MODELING/id_vgs__Transfer_subV _DeviceA_5053_8x100~DC_MODELING~id_ DC_MODELING/id_vgs_Transfer _DeviceA_5053_8x100~DC_MODELING~id_ DC MODELING DC MODELING/id vds Output DeviceA 5053 8x100~DC MODELING~id CV_Modeling CV_Modeling/spar_cap_vd_vglow _DeviceA_5053_8x100~DC_MODELING~id_ DeviceA 5053 8x100~DC MODELING~ig 4 CV_Modeling/spar_cap_vg_vd1 DC_MODELING_LSYNC CV_Modeling/spar_cap_vd_vg_T _DeviceA_5053_8x100~R_L_Subcircuit~Spa DC PULSED _DeviceA_5053_8x100~R_L_Subcircuit~Spa CV_Modeling/spar_cap_vg_vdhigh DC ModelRobustness DC_MODELING_LSYNC/id_vds_Outpu _DeviceA_5053_8x100~SPAR_MODELING~I DC_PULSED/idvd_vg0V0_vd0V0 _DeviceA_5053_8x100~SPAR_MODELING~1 SPAR_MODELING DC_PULSED/idvd_vgm3V3_vd28V0 _DeviceA_5053_8x100~SPAR_MODELING~: Deviced 5053 8v100~SPAR MODELING~ SPAR MODELING LSVNC DC PLILSED/idvd vam8\/0 vd28\/0 > 0 > < >

GaN Modeling GUI

How to Use GaN Modeling GIII

How to Use Ga	aN Moc	delina GU	Name	Value	
			UtilitiesLoc	ASM_HEMT_GaN_UTIL	ITIES
	Function Program2	/			Browse
Select Plots	3 CLOBAL VAD	UtilitiesLoc			
id_vg	4				
logid_vg	5 !define	here which individual P	lots (*no* MultiPlots!) and wh	ich Parameters you want to use for	this mu
gm_vg	& Plots	= 'id va, logid va am	va. !logam va. !logam logid. a	m2 va, !ia va"	
loggm_vg	7	! Choices:	Enter a comma-blanc separated	list of Plots	
loggm_logid	8	1	-you can also include Plots o	f other Setups, using//Setup/	/Plot
gm2 vg	9	1	-you can preceed plot names w	ith a ! to enter them to the Plot	list of
ja va	10	!	but not as currently active	targets for the PO, e.g. !idvg	
-99	11	1	-setting Plots="" will open a	GUI to manually select from all H	lots of
	12 Parameters	= "MAIN.VOFF, MAIN.NFAC"	IOR"		
	13	! Choices:	Enter a comma-blanc separated	list of ModelParameters or Model	Variable
Select Parameters	14	1	You can preceed parameter nam	es with a ! to enter them as candi	ldates, 🕡
MAIN.VOFF	15	!	When linking to DutParameters	: define Dutname.ParameterName	
MAININEACTOR	16	!	When linking to Variables: Mo	delVariables w/o any path, Dut and	i Setup l
in an in cron	17	1	-Parameters = "": open the	GUI without any Parameters predef	ined.
	18	1	User can selec	t parameters from the GUI by himse	lf.
	19	!	-Parameters = "n/a": show onl	y MultiPlot incl. Comment, no Plot	:Select (
	20	!	Useful when ju	st displaying current extraction r	esults,
	21	!]	Parameters = "Compare": show o	nly MultiPlot incl. Comment, no Pa	ramSele
Add Del Restore	22 Comment	= "In Plot LOG id(vg),	, fit by manual tuning		
	$2/ \rightarrow \text{VOFF:}$	cut-off voltage			
	24 -> NFACTOR:	: sub-VOFF slope paramet	ter [default: 0.5]		
	25 Ignore the	above-VOFF fit (will be	done in the next step by mobi	lity parameters)"	
Plot LOG id(vg), fit by manual tuning VOFF: cut-off voltage	20	! The Comme	ent will be displayed on top 1	eit of the MultiPlot. Enter "" for	'no co
NFACTOR: sub-VOFF slope parameter [default: 0.5]	27	! II the Co	omment starts with 'FF: ', it	will be displayed with Fixed Font	(Courie
ore the above-VOFF fit (will be done in the next step by mobility parameters)	28 PO_Error	= "Relative"	E Dlatostinizan annan Chaisan	. UD-lating UDbeclute UU (lase	
	29 20 DO . ChOn Gt	! Preset of	i Plotoptimizer error. Choices	: "Relative", "Absolute", "" (keep)s last
	³⁰ PO_ShowOnSt	Larcup = 0	anable showing the plat Optimi	TOT OF MEL CUIT STATETO OF POLO	f = 1 = =
	32 1	: Flag LO 6	showing the Piot Optimi	zer on MDL GOI startup or not? 0 -	· laise,
	33 mdlGuiStatu	us=GaN ModelingCUT (PO Sh		Comment PO Error)	
	34	us-saw_Houeringsor(PO_Sho	Swonstartup, rarameters, FIOts	, conuncine, ro_hitor,	
	1				
					/

How to Define Parameter Groups

Select Parameters MAIN.VOFF \wedge MAIN.NFACTOR MAIN.U0 MAIN.UA MAIN.UB MAIN.CDSCD Add Del Restore Select Param. Group DC_GateCurrent \sim DC_idvg_lin DC idva sat < >

Model Variables Macros	
Search P Show All	Refresh
Name	Value
PARAMGROUP DC GateCurrent	MAIN.IGSDIO, MAIN.NJGS
PARAMGROUP_DC_idvg_lin	MAIN.VOFF, MAIN.NFACTOR, MAIN.U0, MAIN.UA, MAIN.UB, M
PARAMGROUP_DC_idvg_sat	MAIN.ETA0, MAIN.VDSCALE, MAIN.RTH0
PARAMGROUP_DC_idvd	MAIN.LAMBDA, MAIN.VSAT, MAIN.DELTA, MAIN.THESAT
PARAMGROUP_ext_resistors	MAIN.RDSMOD, MAIN.RGATEMOD, RG.R, RS.R, RD.R
PARAMGROUP_int_resistors	MAIN.RDSMOD, MAIN.RGATEMOD, MAIN.RSHG, MAIN.RSC, MAI
PARAMGROUP_Temp_DC	MAIN.UTE, MAIN.KT1, MAIN.AT, MAIN.KTGS
PARAMGROUP_Temp_int_resist	MAIN.KNSO,MAIN.ATS,MAIN.UTES,MAIN.UTED,MAIN.KRSC
PARAMGROUP_Spar_Coverlap	MAIN.CGSO, MAIN.CGDO, MAIN.CDSO, MAIN.CBDO, MAIN.CBSO
PARAMGROUP_Spar_Cfringing	MAIN.CFG, MAIN.CFD, MAIN.CFGD, MAIN.CFGD0, MAIN.CFGD
PARAMGROUP_Spar_Cdepletion	MAIN.CJ0,MAIN.VBI,MAIN.MZ,MAIN.AJ,MAIN.DJ
PARAMGROUP_Spar_BiasDependency	MAIN.VDSATCV, MAIN.CGDL
PARAMGROUP_Temp_Spar	MAIN.KTVBI, MAIN.KTCFG, MAIN.KTCFGD
PARAMGROUP_TrapMod1	MAIN.TRAPMOD, MAIN.CDLAG, MAIN.RDLAG, MAIN.IDIO, MAI
PARAMGROUP_TrapMod2	MAIN.TRAPMOD, MAIN.CTRAP1, MAIN.RTRAP1, MAIN.CTRAP2
PARAMGROUP_TrapMod3	MAIN.TRAPMOD, MAIN.CTRAP3, MAIN.RTRAP3, MAIN.VATRAP
PARAMGROUP_FieldPlate1	MAIN.FP1MOD, MAIN.LFP1, MAIN.DFP1, MAIN.IMINFP1, MAI
PARAMGROUP_FieldPlate2	MAIN.FP2MOD, MAIN.LFP2, MAIN.DFP2, MAIN.IMINFP2, MAI
PARAMGROUP_FieldPlate3	MAIN.FP3MOD, MAIN.LFP3, MAIN.DFP3, MAIN.IMINFP3, MAI
PARAMGROUP_FieldPlate4	MAIN.FP4MOD, MAIN.LFP4, MAIN.DFP4, MAIN.IMINFP4, MAI
PARAMGROUP_Quantum	MAIN.ADOSI, MAIN.BDOSI, MAIN.QM0I

Live Demo for GaN Modeling GUI

Export Model to ADS for Load-Pull Simulation

將Model導入ADS

ASM_8X100_1 [checkModel_lib:ASM_8X100_1:schematic] (Schematic):4

	r 🗗 🗖		3	X	9	6	+ ‡ →
0	Xa	<u>3</u>	X	-	á	l <mark> </mark> -	!
Parts		₽×					
Ø	<u>i</u>		• •		•		•
Search	all l···	7					
Demok	Kit Non	Line: ~					
TECH		^	· ·	•	•	• •	
DEMO							
IND	RES					• •	• •
				:		• •	
DEMO	DEMO		• •	·	•	•	

ASM HEMT M

ASM HEMT M1

 \times

PA

OK

З

RTOTALPORT1 = 400.0m RTOTALPORT2 = 400.0m R_SOURCE = 50.00 $R_LOAD = 50.00$ X LOAD = 0.000CTERM P1 = 1.000a LTERM_P1 = 1.000f CTERM_P2 = 1.000a LTERM P2 = 1.000f RS.R = 1.000m RG.R = 1.000m RD.R = 1.000m LS.L = 3.475p LG.L = 11.72pLD.L = 100.3f Cp11.C = 1.000f . Cp22.C = 140.0f Cp12.C = 8.000f

· · · [4] · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	Num=1
	· · · · · · · · · · · · · · [. [#] · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	R=0.001 Ohm
c c	· · · · · · · · · · · · · · · · · · ·
Cp12	
C=8E	^{:15}
	L=1.003E-13
	[. ^{**}
	ASM_HEMT_5N · · · · · · · · · · · · · · · · · · ·
Num=2 RG	
· · · · · · · · · R≖0.001 ·Ohr	m . L=1.172E-11 (h.).
	∿=
	R=0.001 Ohm
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Cp11	
C≐1E-15	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	Number 1 and 1
<<少蹴>>	
<<少\\$\ 1.創建schema	atic後,使用tools進行參數導入
<<少廠>> 1.創建schema	atic後,使用tools進行參數導入
<<少廠>> 1.創建schema 2.自動帶出 AS	atic後,使用tools進行參數導入 SM HEMT M model card
<<少廠>> 1.創建schema 2.自動帶出 AS	atic後,使用tools進行參數導入 SM_HEMT_M model card

4.自行建構外部參數與ASM_HEMT_5N連接

建立Symbol & 檢測基本電性 ▲dvanced Design System 2020 (Main) File View Options Tools Window DesignKits DesignGuide Help W W W W W W W W W W W W W W W W W W W	 > 0_Model 1_DC > DCIV Schematic DCIV.dds C GMVG_check GMVG_check.dds 2_SP 3_LP 4_matching 5_preSim 6_postSim 7_postSim_entirePAEM
Paleta Paleta Paleta Paleta	CVV (deckModel_libDCV/schematic) (Schematic)3 File Edit Select View Insert Options Tools Layout Simulate Window DynamicLink DesignCuide Help Image: Comparison of the
TECHNOLOGIES	0 10 20 30 40

60

50

—

Var VAR6 rCable=0.36

I_Probe + SRC2

Ξ

20

30

vd

46

Power Amplifier Design Goals

Load Pull Technique

- Determine Optimum load impedance for maximum Pout and PAE performance
- Specify matching networks
- Understand tradeoffs!

KEYSIGHT

[M. S. Hashmi et. al, IEEE Instrum. Meas. Mag., 16 (2), Feb., (2013)]

Large-Signal Model Validation

ADS Schematic for simulation of load-pull contours

22 dBm signal @ 10 GHz

Pout & PAE load pull contours for 10 mA/mm [1] S. A. Ahsan *et al.*, *IEEE J. Electron Devices Society*, Sep., [2017] Pout & PAE load pull contours for 100 mA/mm Source: Prof. Yogesh Chauhan

Validation – Drive-up (HB)

Harmonic balance drive-up characteristics showing Pout, PAE & Gain

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]

KEYSIGHT

Voltage (V) Load-line 400 Drain Current (mA) 20-0.8 Drain Current (A) 300 0.6 15-Drain-Source -200 0.4 10 _0 100 -0. 20 40 60 80 100 120 140 160 180 200 0 20 25 0 10 15 Time (ps) Drain Voltage (V)

1.0

-500

Time domain waveforms of drain voltage & current. Load line contours spanning the IV plane

	Frequency	10 mA/mm	100 mA/mm
	f_0	22.46 + <i>j</i> 38.54	30.53 + <i>j</i> 34.35
Max.PAE	f_1	40.61 – <i>j</i> 93.39	37.32 <i>– j</i> 73.44
	f_2	11.39 – <i>j</i> 0.07	14.77 + <i>j</i> 10.83
	f_0	19.57 + <i>j</i> 22.83	19.57 + <i>j</i> 22.83
Max. P _{OUT}	f_1	253.48 <i>– j</i> 65.72	253.48 <i>– j</i> 65.72
	f_2	15.66 – <i>j</i> 31.21	15.66 – <i>j</i> 31.21

Source: Prof. Yogesh Chauhan

25

Live Demo for Load-Pull Simulation

- RF GaN modeling is challenging but extremely important.
- IC-CAP provides an easy-to-use kit for CMC GaN modeling.
- The tuned parameters can be easily imported to ADS for design and verification.

Let's work together to enable first pass design success!

問卷填寫與抽獎

- 請點選會議訊息欄中的連結,或掃描右方QR Code,以 進行問卷填寫。
- 相關欄位請確實填寫,以確保抽獎資格。
- 我們將從有效問卷中抽出10位,寄送小禮物。請留有效 地址。
- 若您還有其他技術問題,請寄信至亞太區客戶服務中心:
 <u>eesof-asia_support@keysight.com</u>

台灣繁體問卷:

大陆简体问卷:

• 感謝您的參與!

