Advanced RF Board Skills in ADS

Sharon CHEN

2020.04.09

Application Engineer

1.02410

Outline

- Quick review of Momentum
- Lab1: Port Type Overview
- Lab2: Net Type Setup for Physical Model Simplified
- Lab3: Understand Mesh, Solver and Preprocessor
- Summary

Hot Keys – Schematic

Edit Commands

Following table lists the hot keys for the Edit menu options.

Edit > CopyCtrl+CEdit > Copy/Paste > Copy Using ReferenceCEdit > CutCtrl+XEdit > DeleteDelEdit > End CommandEscEdit > Mirror About XShift+XEdit > Mirror About YShift+YEdit > Move > Move Component TextF5Edit > Move > Move Using ReferenceMEdit > Move > Move Using ReferenceM	Menu Name			Default
Edit > Copy/Paste > Copy Using Reference C Edit > Cut Ctrl+X Edit > Delete Del Edit > Edit > Command Esc Edit > Mirror About X Shift+X Edit > Mirror About Y Shift+Y Edit > Move > Move Component Text F5 Edit > Move > Move Edge Edit > Move > Move Using Reference Edit > Move > Move Using Reference M	Edit > Copy			Ctrl+C
Edit > Cut Ctrl+X Edit > Delete Del Edit > End Command Esc Edit > Mirror About X Shift+X Edit > Mirror About Y Shift+Y Edit > Move > Move Component Text F5 Edit > Move > Move Edge Edit > Move > Move Using Reference Edit > Move > Move Using Reference M	Edit > Copy/Paste > Copy	Using Refere	nce	C
Edit > Delete Del Edit > End Command Esc Edit > Mirror About X Shift+X Edit > Mirror About Y Shift+Y Edit > Move > Move Component Text F5 Edit > Move > Move Edge Edit > Move > Move Using Reference Edit > Move > Move Using Reference M Edit > Move > Move Wire Endpoint Other Shift Wire Shift Wire Endpoint	Edit > Cut			Ctrl+X
Edit > End Command Esc Edit > Mirror About X Shift+X Edit > Mirror About Y Shift+Y Edit > Move > Move Component Text F5 Edit > Move > Move Edge Edit > Move > Move Using Reference Edit > Move > Move Using Reference M Edit > Move > Move Wire Endpoint Other Shift Wire Shift Wire	Edit > Delete		κ.	Del
Edit > Mirror About X Shift+X Edit > Mirror About Y Shift+Y Edit > Move > Move Component Text F5 Edit > Move > Move Edge Edit > Move > Move Using Reference Edit > Move > Move Using Reference M Edit > Move > Move Wire Endpoint Other Shift Wire	Edit > End Command			Esc
Edit > Mirror About Y Shift+Y Edit > Move > Move Component Text F5 Edit > Move > Move Edge Edit > Move > Move Using Reference Edit > Move > Move Wire Endpoint Other Shift Wire Endpoint	Edit > Mirror About X	÷		Shift+X
Edit > Move > Move Component Text F5 Edit > Move > Move Edge F5 Edit > Move > Move Using Reference M Edit > Move > Move Wire Endpoint Other Shift Move	Edit > Mirror About Y			Shift+Y
Edit > Move > Move Edge	Edit > Move > Move Comp	onent Text	-a (8)	F5
Edit > Move > Move Using Reference M	Edit > Move > Move Edge			
Edit > Maya > Maya Mira Endnaint Otd. Ohid. M	Edit > Move > Move Using	Reference		M
Eait > move > move vvire Enapoint Cur+Shilt+M	Edit > Move > Move Wire	Endpoint		Ctrl+Shift+M
Edit > Paste Ctrl+V	Edit > Paste	(*))		Ctrl+V
Edit > Redo Ctrl+Y	Edit > Redo			Ctrl+Y
Edit > Rotate Ctrl+R	Edit > Rotate		2	Ctrl+R
Edit > Undo Ctrl+Z	Edit > Undo	30)	•	Ctrl+Z

• Help > F1

View Commands

Following table lists the hot keys for the View menu options.

Menu Name		De	fault
View > Clear Highlighting		F8	
View > Command Quick Help		Sh	ift+F1
View > Grid Display		Ctr	I+G
View > Origin Crosshair		Sh	ift+O
View > Pan View		Tat	0
View > Pop Out Of Hierarchy		В	
View > Push Into Hierarchy		Sh	ift+E
View > Restore Last View		Ctr	I+L
View > View All		F	
View > Zoom > Zoom Area			
View > Zoom > Zoom By Factor > Zoom	n In x2	+	
View > Zoom > Zoom By Factor > Zoom	out x2	-	2042
View > Zoom > Zoom To Selected		Ζ	

HSD Workshop

Insert Commands

Following table lists the hot keys for the Insert menu options.

Menu Name			Default	
Insert > Change Entry Layer T	io.	2	Ctrl+Shift-	+C
Insert > Component > Compo	nent Library.	•	Ι.	
Insert > Measure			Ctrl+M	
Insert > Shape > Polygon			Shift+P	
Insert > Shape > Rectangle	2		R .	
Insert > Shape > Undo Vertex			Backspac	e
Insert > Text			Ctrl+T	
Insert > Wire			Ctrl+W●.	

Window and Miscellaneous Cor

Following table lists the hot keys for the Window and Miscellaneous

Menu Name			Default
Window > Close			Ctrl+F4
Window > Layout			Ctrl+Shift+L
Window > Open Another S	chematic	Window	Ctrl+Shift+S
Help > Topics and Index			F1 *
Options > Snap Enabled			Ctrl+E
Select > Select All			Ctrl+A*
Simulate > Simulate			F7 *

Lab 2

Lab 1

Hotkey

Outline

Summary

3

Lab 3

Hot Keys – Data Display

File Command

Following table lists the File m

Menu Name	Default
File > New	Ctrl+N
File > Open	Ctrl+O
File > Print	Ctrl+P
File > Save	Ctrl+S

Edit Commands

Following table lists the Edit menu cor

Menu Na	Menu Name				
menu nu	inc	Default			
Edit > Copy	2	Ctrl+C			
Edit > Cut		Ctrl+X			
Edit > Delete		Del			
Edit > End Com	mand	Esc			
Edit > Paste		Ctrl+V			
Edit > Redo		Ctrl+Y			
Edit > Select Al	L	Ctrl+A			
Edit > Undo		Ctrl+Z			

View Commands

Following table lists the View menu command

Menu Name	Default
View > Grid Display	Ctrl+G
View > Restore Last View	Ctrl+L
View > View All	F
View > Zoom > Zoom Area	
View > Zoom > Zoom In x2	+
View > Zoom > Zoom Out x2	-

Miscellaneous Commands

Following table lists the various other menu commands suc

Menu Name		Defau	It
Help > Topics and Index		F1	
Marker > New		Ctrl+M	
Options > Hide ADS Logo on	all plots	Alt+L	
Options > Snap Enabled		Ctrl+E	
Window > Close		Ctrl+F4	
Window > New		Ctrl+Shift+	D

ADS Tips Forum (ADS小秘訣) www.keysight.com/find/ADS_tips

	~	KEYSIG	HT									Register
	首頁	Forums	Blogs	Help My Links •								Q
	Home	Advanced Design System 小 ************************************	ADS/Jvi	够诀 (ADS Tips))			追随	動化	₽▼	3	\$-
	5月 10日 10日 10日 10日 10日 10日 10日 10日 10日 10日	、谈仿真	所有	内容 (15) 📄 文件 (0)	📁 討論區 (0) 🚺 問題 (15) 🚺	視訊 (0)					;	
	P Qui App ED	ck Links for All Dications U (自学教材)	依動 輸入	作篩選: 無	○ □ 依分享的內容篩選 · ○ 依標記篩選 依最近的活動	排序:最新在前▼						
	▶ 5G ▶ Aut 达)	(5G 通信系统仿真) omotive Radar (汽车	存留	i 2019 大学学术论文 (sha	ared in Keysight EEsof Design	作者 Jiarui Wu	最近的活動 2019年11月12日 下午 07:36:58	檢視 529	© 0	Д 0	© 2	¢-
0	■ Pov 子)	ver Electronics (电ス S - 入口	_{力电}	Forum) Keysight EDA 软件免费	学习资源汇总-2019.11	Jiarui Wu 🚥	2019年11月7日下午 06:13:28	5368	2	2	0	¢-
	AD:	S - 电路设计与仿真	. 🎽	新入职工程师必看视频	ADS Basic (YOUKU)	XUYue 🔤	2019年10月14日 上午 12:44:51	1706	0	0	0	¢٠
	AD: AD: 真	S - SI PI EMI RFI S - 布局布线与电磁	\$15	新入职工程师必看视频 Communication (YouTu	- SystemVue Basic - be)	Jiarui Wu 🔤	2019年10月1日下午 05:32:54	238	0	0	0	¢-
	■ Dev 器件	vice Modeling (半导 ‡建模)	体 💆	新入职工程师必读课程。 新入职工程师必读课程。	·微波单片集成电路设计 (MMIC)	xindong	2019年9月17日下午 11:38:28	1671	0	0	0	¢-
	EEs (Wo	sof 实作研讨会教材 orkshop)	¥	新入职工程师必看视频	- ADS Basic (YouTube)	SharonChen	2019年9月15日下午 11:37:13	319	0	0	0	¢-
	EM	Pro (三维电磁场伤。 C and MMIC Desig	ļ) 🔽	新入职工程师必读课程。	- 三维电磁仿真 (EMPro)	zeyu.yi@keysight.com	2019年9月9日下午 08:28:01	2830	0	1	2	¢-
	Langer Sys	itemVue (通信系统(1066	厉 🚩	新入职工程师必读课程	- 通信系统 (SystemVue)	Jiarui Wu 🚥	2019年7月23日 上午 05:14:33	5244	2	1	1	¢-
	「日本」の	KG J	<u>×</u>	新入职工程师必读课程 (SystemVue+ADS)	- IBIS AMI 建模	Jiarui Wu 🚥	2019年6月11日上午 02:41:00	1918	0	0	0	¢-
	题//₽	5	×	新入职工程师必读课程 Modeling)	- 半导体器件建模 (Device	ShaoliLv 🚥	2019年6月10日 下午 05:56:42	1282	0	0	0	¢-
	■ 啟重 日 日 日 日 日 1 1 1 1 1 1 1 1 1 1 1 1 1	动一個討論區 成檔案	¥	新入职工程师必读课程。	·信号完整性 (Signal Integrity)	Chih Yuan Tu 🔤	2019年6月9日 下午 11:18:44	4904	0	2	0	¢-
	■ 撰編	夏文件 Z視訊		SystemVue 通信实验教	桯(這用于高校)	Jiarui Wu 🔤	2019年2月1日下午 05:55:09	3584	0	1	0	Q-
			×	分)	- 山川市のAFA(1月1日のAPPELLUILATE	Jiarui Wu 🔤	2019年2月1日 下午 05:55:05	1097	U	1	U	4.

	KEYSIGHT TECHNOLOGIES									Register
	首頁 Forums Blogs	5	Help My Links -				🌲 3) -	Q
1	Advanced Advanced Advanced Advanced Advanced ADS	 { > Dis / 7	ccussion Forums 够诀 (ADS Tips)			追隨	動作	- -	0	¢-
	Home 活動 内容 人	員	子空間							
頭	別 达人谈仿真	所有	内容 (60) 📄 文件 (2) 📃 討論區 (0) 🔽 問題 (58) 🚺	視訊 (0)					:	
	Quick Links for All	依動	作篩選: 魚 〇 依分享的内容篩選							
	EDU (自学教材)	輸入	以按文字篩選 依晨近的活動	非序:最新在前▼					12	
	5G (5G 通信系统仿真)	105 07		作李	易活动活動	给捐	0			
	Automotive Radar (汽车雷 达)		Power Integrity Workshop	Chih Yuan Tu 🔤	2019年12月16日 上午 07:20:05	1017	2	0	2	¢-
1	Power Electronics (电力电 子)	×	2019 大学学术论文 (shared in Keysight EEsof Design Forum)	Jiarui Wu 🔤	2019年11月12日下午 07:36:58	529	0	0	2	¢-
2	ADS - 入门 ADS - 申路设计与仿真	~	EEsof Design Forum 2019 (Hsinchu and Shanghai)	Chih Yuan Tu 🔤	2019年10月30日 下午 05:37:05	275	0	0	0	¢-
-	ADS - SI PI EMI RFI	V	[HSD] 2019OCT_FlexDCA&COM Workshop	Chih Yuan Tu 🔤	2019年10月14日下午 05:51:03	175	0	0	0	¢-
l	ADS - 布局布线与电磁仿 真 Device Modeling (半导体	×	[Workshop] 2019Q4 RF Basic - Efficient Impedance Matching with ADS	SharonChen	2019年9月23日 上午 12:08:34	929	0	0	0	¢-
	器件建模) EFsof 实作研讨会教材	×	FY17Q2 Workshop_EMI辐射干扰 (RE) 仿真	zeyu.yi@keysight.com	2019年8月27日下午 04:21:20	663	0	0	0	¢-
Ļ	(Workshop) EMPro (三维电磁场仿真)	Y	FY19Q2 Workshop: Optical Module SI/EMI Simulation	zeyu.yi@keysight.com	2019年8月25日 上午 12:03:24	579	0	0	4	¢-
	RFIC and MMIC Design	×	[Workshop] 2019Q4 Understanding PCB Effects in DC- DC Converters	JasonChen 🔤	2019年8月23日下午 05:30:33	252	0	0	0	¢٠
	SystemVue (通信系统仿 真)	?	ADS2019 SI/PI Seminar(西安、苏州、南京、深圳和北京)	Xiuguo 🔤	2019年8月9日下午 07:05:50	915	0	0	1	۵-
清	(時)選取的	×	2017Q1_SSO Simulation with Power Aware IBIS Model within ADS	Chih Yuan Tu 🔤	2019年7月29日 下午 05:54:58	214	1	0	0	¢-
剅 [,]	⊯提問	×	2016Q1_Advanced SI Simulation Skills	Lin_Ming_Chih	2019年7月22日下午 11:07:55	2081	0	0	0	¢-
	啟動一個討論區 上載檔案	×	2019.6.11/13 深圳上海ADS电源完整性仿真与测量训练 营资料	zhangtao 🔤	2019年6月15日 上午 12:15:19	1040	0	0	3	¢٠
	- 撰寫文件 建立視訊	×	全新射频匹配流程_ADS2019Update1.0	XUYue 🔤	2019年5月5日 上午 06:22:38	958	0	0	0	۵-

Hotke

Outline

Lab 1

Lab 2

Lab 3

Summar

in ADS Advanced RF Board Skills

微信公眾號

く<u>訂閱帳號</u> 是德科技EEsof软件 ©

星期四 下午5:23

2

单片微波集成电路(MMIC) 设计系列——MMIC基础 8月3日

EDA_Forum由是德科技EEsof EDA大中华 地区运营,介绍EDA设计的基础知识,实 用经验分享。戳

閱讀全文

ID: EDA Forum

<

信号完整性

1、分享信号完整性(SI)、电源 完整性(PI)、电磁兼容性和微 波射频方面的知识/行业信息及动 态;2、不定期举办线下/上公益 活动;3、帮助大家更好的学习 和了解硬件、高速电路、微波射 频电路、EMC和高速PCB的设 计。SIPIEMC

70篇原创文章,16位朋友关注

取消关注

ID: SI_PI_EMC

6

Advanced RF Board Skills in ADS

Outline Hotkey Lab 1 Lab 2 Lab 3 Summar

Outline

- Quick review of Momentum
- Lab1: Port Type Overview
- Lab2: Net Type Setup for Physical Model Simplified
- Lab3: Understand Mesh, Solver and Preprocessor
- Summary

Advanced RF Board Skills in ADS

Momentum Overview

- Method of Moment (MoM) technology
- Accurate and efficient simulation of complex multilayer geometries

Advantages and Applications:

· Fast and efficient simulation

· PCB, Packages

Simulate large number of ports

· Verify dielectric stack up & ports

Tightly integrated within ADS environment

Solves complex 3D multilayer planar geometry

Design flow integration with ADS tools

Accurate from DC up to 100's of GHz

- · Define meshing criteria
- · Polygonal mesh is generated
- Maxwell's equation solved using Method of Moment

- S-parameter response Surface current plots
- Far field radiation pattern

First version of Momentum simulator : Released in 1994

Lab 3

Lab 2

Lab '

Benefit and Cost of MoM Technology

		Hybrid Solver	Mom	3D EM	
	Accuracy >10 GHz	Low	High	High	-
	Learning	Easy	Normal	Hard	
	Usability	Easy	Normal	Normal	Cost
•	Flexibility	Low	Medium	High	
	Speed	Fast	Medium	Slow	
	Memory Required	Low	Medium	High	
	Price	Medium	Medium	High	

Hotke

Outline

Lab 1

Advanced RF Board Skills in ADS

Lab 3 Summary

. 9

Lab 2

EM Setup Are Different for Each Solver Technology

- FDTD (Finite Difference Time Domain)
- FEM (Finite Element Method)
- MoM (Method of Moment)

- Arbitrary 3D structures
- Time Domain

MoM

- Full Wave EM Simulations
- · Handles much larger and complex problems

Today's Focus

Each port requires separate simulation
GPU based hardware acceleration
EMPro UI

Restricted 3D Structures
 Frequency Domain

- Full-Wave and Quasi-Static Simulations
- Dense & Compressed Matrix Solvers

Lab 2

Lab 1

Lab 3

Summar

Multiport Simulations at no Additional Cost

High Q

ADS UI

Arbitrary 3D structuresFrequency Domain

ADS or EMPro UI

High Q

Full Wave EM Simulations

Direct, Iterative Solvers

Multiport Simulations at no Additional Cost

FEN

Outline

- Quick review of Momentum
- Lab1: Port Type Overview
- Lab2: Net Type Setup for Physical Model Simplified
- Lab3: Understand Mesh, Solver and Preprocessor
- Summary

Advanced RF Board Skills in ADS

EM Ports in MoM Technology

- Consist of + and terminals
- Placed where EM models connect to circuit components
- Compute voltages and currents from E&H field, and also S-parameters

A lumped source is attached with a source impedance
No phase delay between + and –terminal

- Must be electrically small (size < λ /10)
- Otherwise it may result unphysical behaviors

EM Port Calibration in MoM Technology

Direct

- TML (Transmission Line)
- TML (zero length)
- SMD (Surface Mount Devices)
- Delta gap

u ava matav Dav				
Number	Codlayor	Name	Food Turno	Ref Impedance (Ohn
ta a	Gild Layer	Name	reeu type	
<u>∽ 1</u> 1	<implicit></implicit>	P1 [Auto 🔻	50 + 0i
O P1			Auto	
Gr	nd		Direct	
∽ <u>1</u> 2	<implicit></implicit>	P2	TML (meth)	50 + 0i
O P2			IML (ngtn)	
Gr Gr	nd	D 2	Delta gan	
✓ <u> </u>	<implicit></implicit>	P3 1	Denta gap	D0 + 0I
• P3				
< G	ia			>
avout Pine				
Name	Laver		Net	Connected to
	cond		D1	1(+)
D₁ D1	conu		D2	7(+) 2(+)
D• P1	cond			<u> </u>
D+ P1 D+ P2 D+ P3	cond cond		P3	3(+)
D+ P1 D+ P2 D+ P3	cond cond		P3	3(+)

Advanced RF Board Skills in ADS

13

Lab 2

Hotkey

Outline

Lab 1

Lab 3

Summary

General Pin Types

Correct Pins Allow for Correct Ports

Lab 3

14

Lab 2

Lab 1

Outline

Excitation voltages can be limited in extent by using Edge/Area Pins

ADS Momentum Port Calibration/Feed Types

- MoM Ports placed on a metal EDGE will excite the entire edge with constant potential. Unless Edge Port is
 used to confine excitation. If the edge is >1/10 wavelength results can become non-physical.
- MoM Ports placed inside metal are point sources that will excite a mesh element around the port. Unless Area Port is used, area becomes constant potential.
- MoM Ports inject current with 0 deg phase shift (Lumped Source). If the physical difference between the + and – pins is > 1/10 wavelength results can become non-physical.
- MoM ports, being lumped sources will NOT couple to surrounding structures.
- Port Size restrictions:

EM Ports Editor

A Glimpse into Calibration/Feed Types

🔁 Port Editor			×		
View Edit Too	ols Help				
S D 10 10 10 X 12 1 X 17 10					
S-parameter Ports					
Number	Gnd Layer	Name	Feed Type		
🗸 竹 1	cond2	P1	Auto		
O P1 O Gnd					
✓ ¹ / ₂ 2	cond2	P2	Auto		
• P2					
Gna					
<			>		
Layout Pins					
Name	Layer		Net		
O• P1	cond		P2		
O• P2	cond		P2		

Feed Type
Auto 👻
Auto
Direct 6
TML
TML (zero length)
SMD
Delta gap
* 1-0.00211 ^{-*}

Skills

Advanced RF Board

Hover over Feed Type for pop-up help graphic

Summary of EM Ports in ADS 2016

• "Old" Nomenclature for Calibration/Feed Type

Calibration Type	Momentum	
None	If none of the available calibration types is valid for the connecting component, specify "None".	
TML (this is the default, changed @ sim time if not on outer edge)	This calibration type assumes the structure is fed through a transmission line. It removes the open end effect and adds the mutual coupling induced by the feeding transmission li	
TML (zero length)	This calibration type removes the open end effect.	
SMD	This calibration type removes the open end effect at port and adds the mutual coupling between the current flowing from the + to – pins and the rest of the circuit assuming the area between both pins would be filled with metal.	
Delta Gap	This calibration type adds the effect of metal filled in the area between the + and – pins. A gap in the middle allows connecting the source.	

Advanced RF Board Skills in ADS

Summary of EM Ports in ADS 2017 & Newer

• New Nomenclature for Calibration/Feed Type

urrent vith
niddle

TML Feed Type (1/5)

Transmission Line

Advanced RF Board Skills in ADS

Ground Plane

Fringe Capacitance

Advanced RF Board Skills in ADS

Outline Hotkey Lab 1 Lab 2 Lab 3

20

Summary

TML Feed Type (3/5)

Source attached

Added Calibration Line Length "L"

Advanced RF Board Skills in ADS

Port Location

TML Feed Type (4/5)

KEYSIGHT

Advanced RF Board Skills in ADS

TML Feed Type (5/5)

Mutual coupling between the feed lines will be removed after TML calibration

Mutual coupling between the feed lines will be turned off during TML calibration

Misaligned Ports

۲

Advanced RF Board Skills in ADS

Incorrect Use of TML Feed Type

Incorrect Use of TML Feed Type

Incorrect Use of TML Feed Type

TML Zero-Length Feed Type

None Calibration - Direct Feed Type

- No port calibration but could be very versatile
- Ground reference can be anywhere
- Applies to point pins, edge pins and area pins
- Some guidelines
 - Port size must be electrically small (length < $\lambda/10$)
 - Ground reference should be on the true ground return path
 - A local open end effect is included in the DUT model. This is a result of the direct feed being applied to the edge port.

Lab 3

Delta-Gap Feed Type

KEYSIGHT TECHNOLOGIES

Advanced RF Board Skills in ADS

Outline Hotkey Lab 1 Lab 2 Lab 3 Summary

Delta-Gap Feed Type

30

Advanced RF Board Skills in ADS

SMD Feed Type

Calculation is referenced to the infinite ground plane

Calculation is referenced to the infinite ground plane

31

Advanced RF Board Skills in ADS

Both of Delta-gap and SMD Feed Type

• Only differential mode supported

• Current flows straight through the added pads

Lab 2

Lab 1

Outline

Lab 3

Summar

Advanced RF Board Skills in ADS

Lab1 – Port Calibration/Feed Types

Long line with gap for SMD component

Gap port calibration = DeltaGap|SMD|None(Direct)

Gap shorted

KEYSIGHT

Advanced RF Board Skills in ADS

Outline Hotkey Lab 1 Lab 2 Lab 3 Summary

Lab1 – Port Calibration/Feed Types

Long line with gap for SMD component

Gap port calibration = DeltaGap|SMD|None(Direct)

Gap shorted with short line (TML calibration)

Outline

- Quick review of Momentum
- Lab1: Port Type Overview
- Lab2: Net Type Setup for Physical Model Simplified
- Lab3: Understand Mesh, Solver and Preprocessor
- Summary

Metal Model Types

- Sheet-Sheet
- Intrude/Expand-Sheet
- Intrude/Expand-2D distributed
- Intrude/Expand-3D distributed (Recommended)

Thick Metal Model Types

Sheet

2D distributed

3D distributed(Recommended)

Top, bottom and sidewall currents separate
 Any surface current

Advanced RF Board Skills in ADS

Outline Hotkey Lab 1

Lab 3

Summary

Lab 2

Controlled Impedance Line Designer (CILD)

- Impedance Calculation
- Width Calculation for specific impedance
- Support Strip, Microstrip, CPW, Single-Ended, Differential Pair Types
- Statistical Calculation
- Model Generation

📆 cild_1 (Lab1_8_lib) * (Controlled Impedance L	Line Designer)
File View Technology Options Help	
🗅 💣 🖬 🔍 🚔 🏓 🥙 🔛	🚅 🚰 🧠 🚟
•	, Andrew Optimize Sweet Staining
	Name Nominal
E 4	freq 1 GHz
	Length 10 mil
The Contract of the	Width 1 mil
N The State of State	
The State of State	
-	
	Shew Line Type Van 🔲 Shew Sobstate Van 🔝 Shew Manial Van
	Electrical
Substrate Labl B liberabstrate	TML Properties RLOC
Type Stripline Single-Ended *	
Top slaw and a	
Signal pc3	
Bottom plane po5	
	17

Lab 1

Outline

Advanced RF Board Skills in ADS

Check TDR of Metal Type

Accuracy: 3D+Edge > 3D > 2D >> Sheet

Hotkey

Outline

Lab 1

Lab 2

Lab 3

Summary

KEYSIGHT TECHNOLOGIES

Advanced RF Board Skills in ADS

Via Modeling

2

Lumped (Recommended for Power/Ground vias)

- DC resistance and skin effect - Wire self inductance - Meshless equivalent circuit

Wire

- DC resistance and skin effect

- Wire self inductance
- Mutual wire-wire and wire-infinite ground inductances - Meshless equivalent circuit

2D-Distrubuted (Recommended for TLine vias)

- DC resistance and skin effect - All self and mutual inductances and capacitances - Vertical sidewall currents only

3D-Distrubuted

- DC resistance and skin effect - All self and mutual inductances and capacitances - Any surface current

Hotke

Outline

Lab 1

Lab 2

Lab 3

Summary

KEYSIGHT TECHNOLOGIES

Advanced RF Board Skills in ADS

RFPro Vision: EM for every RF circuit designer

Allows users to focus on design rather than setting up EM

Integration

3D view

- Solution for RF PCB, RFIC, MMIC and RF Modules
- Enhanced ADS MOM and FEM simulator performance

Solver

Automatic EM expert settings

- guarantee confidence in EM results for novice and expert users
- Fast & correct analysis setup for **EM-circuit co-simulation**

- Layout
- No Cookie cutting

No exporting

- No removing active devices and placing pins & ports
- No reconnecting schematics to s-parameter files

RF Module

RFIC

RF Board

RFPro Momentum: Automatic Mode for Vias/Thick Metals

 Thanks to RFPro platform, Momentum can now automatically apply different via/thick conductor models depending on the nets type : signals, grounds and power planes

Physical model Thick conductor model Via conductor model

Automatic Automatic

Example on a 60 GHz Wilkinson divider

	-0.08211	
	RFPro 2020	RFPro 2020U1
Matrix size	127500	4750
Runtime (MomRF)	> 10h	27mn

Advanced RF Board Skills in ADS

42

Lab 2

Lab 1

Lab 3

Summar

Lab2 - Net Type Setup for Physical Model Simplified

- Panda Board
- FM_ANT_RX
- FM_ANT_IN
- Frequency Range
 0~500 MHz

_ab ′

Outline

Lab 3

∟ab 2

Simulation Result with Automatic Physical Model

- Thick Conductor Model
 - Automatic
- Via Conductor Model

• Automatic

	Summary Log
	Starting Momentum simulation.
53	Starting C:\Program Files\Keysight\ADS2020 update2\Momentum\2020.20\win32 64\bin\MomEngine.exe
	Waiting for license
	License checkout took 4 min, 0.326 sec
	License checkout took 0.033 sec
	Momentum MomEngine 64 2020.20.064 (*) built: Feb 13 2020
	Copyright 1992 - 2020 Keysight Technologies
	Simulation started on: Mon Apr 6 09:37:37 2020
	Simulation Mode: RF
	Substrate valid
	Layout simplification started
	Layout simplification finished
	Generating mesh at 500 MHz
	S-parameter simulation
	S-parameter simulation started
	initializing
	extracting layout
	expanding thick conductors
	Layout is electrically small below 1.15 GHz (space wave radiation)
	Substrate is electrically small below 9.98 GHz (surface wave radiation)
	reducing mesh
	Automatic selection: direct compressed matrix solver
	Using multi-threading (8 threads)
	Matrix size: 21433 (reduced: 7054)
	Simulation temperature: 298.15 K
	Adaptive frequency sweep started
	Simulation frequency [1] = 0 Hz

TT 1 ...

Simulation Result with Manuel Physical Model

 Thick Conductor Model X Auto-scroll Update Log Summary Starting Momentum simulation. • 3D Starting C:\Program Files\Keysight\ADS2020_update2\Momentum\2020.20\win32 64\bin\MomEngine.exe License checkout took 0.098 sec License checkout took 0.032 sec Via Conductor Model Momentum MomEngine 64 2020.20.064 (*) built: Feb 13 2020 Copyright 1992 - 2020 Keysight Technologies Simulation started on: Mon Apr 6 09:44:35 2020 • 2D Simulation Mode: RF Substrate valid Layout simplification started Layout simplification finished Generating mesh at 500 MHz... S-parameter simulation S-parameter simulation started ... initializing ... extracting layout ... expanding thick conductors Layout is electrically small below 1.15 GHz (space wave radiation) Substrate is electrically small below 9.98 GHz (surface wave radiation) ... reducing mesh Automatic selection: direct compressed matrix solver Using multi-threading (8 threads) Matrix size: 14670 (reduced: 3501) Simulation temperature: 298.15 K Adaptive frequency sweep started Simulation frequency [1] = 0 Hz ...loading Green functions

Simulation Result with Different Net Type

Set D_GND net type as GND
 Set D_GND net type as PWR
 Set D_GND net type as SIG

Summary Log	🗙 Auto-scroll	
Starting Momentum simulat	tion	
Starting C. Program File	e\Keveight\ADS2020 undate2\Momentum\'	2020
Waiting for license	o (neysigne (Abbzozo_updatez (Nomentum (2021
License checkout took 4 r	nin. 0.326 sec	A
License checkout took 0.0	133 sec	
Momentum MomEngine 64 202	20.20.064 (*) built: Feb 13 2020	
Copyright 1992 - 2020 K	evsight Technologies	÷.
Simulation started on: M	on Apr 6 09:37:37 2020	omentum\2020.20\
Simulation Mode: RF		🗙 Au
Substrate valid		
Layout simplification sta	arted	2020
Layout simplification fin	nished	2\Mome:
Generating mesh at 500 MM	Hz	
S-parameter simulation		
S-parameter simulation st	tarted	13 202
initializing		
extracting layout		
expanding thick conduc	ctors	
Layout is electrically s	nall below 1.15 GHz (space wave radia	atic
Substrate is electrically	y small below 9.98 GHz (surface wave	rac
reducing mesh		
Automatic selection: dire	ect compressed matrix solver	
Using multi-threading (8	threads)	
Matrix size: 21433 (redu	ced: 7054)	ave radiation)
Simulation temperature: 2	298.15 K	ace wave radiati
Adaptive frequency sweep	started	
Simulation frequency [1]	= 0 Hz	
Using multi-th	hreading (8 threads)	
Matrix size: 2	21433 (reduced: 7054)	e wave
Simulation ter	nperature: 298.15 K	iriace
Adaptive frequ	iency sweep started	
Simulation fre	equency [1] - 0 Hz	ver
i longing (irr	Using multi-threading (8 threads	2
	Matrix size: 192893 (reduced: 71	.568) 3
	Simulation temperature: 298.15 K	
	Adaptive frequency sweep started	l
· · ·	Simulation frequency [1] = 0 Hz	

Outline

Lab 3

46

Lab 2

Lab '

Advanced RF Board Skills in ADS

Outline

- Quick review of Momentum
- Lab1: Port Type Overview
- Lab2: Net Type Setup for Physical Model Simplified
- Lab3: Understand Mesh, Solver and Preprocessor
- Summary

Advanced RF Board Skills in ADS

Mesh in RFPro

RF RFPro Setup - Advanced Simulator Setup

	Global	Overrides		
Solver				
Matrix solver	Automatic			
Mesh density Geometry overlap extraction Edge mesh Mesh reduction	20 cpw Normal Off On			
Physical model Thick conductor model Via conductor model Preprocessor	Automatic Automatic			**
Healing snap distance Simplify layout Ignore conductor shapes Ignore conductor holes	Automatic On Automatic Automatic			
	**** ***** *****			
Revert		Done	Cancel	

 \times

Lab 3

Summary

Momentum Mesh Generator

 Layout conforming meshes with quadrilateral, rectangular and triangular cells used to compute currents

- MoM problem can be mathematically thought of as a 3D equivalent circuit network with frequency-dependent R's, L's, and C's
- An impedance matrix is created and then solved that allows us to obtain the current amplitudes based on the excitations at the ports
- Create matrix = Matrix Load (quadruple integrals over surfaces of all cell pairs)

Edge Mesh

- 1 Port
- 2 Mesh
- 3 Edge Mesh

Summary

Geometry Overlap Extraction

- Thin Layer Overlap
- If two drawing layers are separated by a thin substrate layer and the mesh cells and object boundaries are not aligned correctly, the simulation data may be less accurate

Advanced RF Board Skills in ADS

FEM Generation 2 : Mesh-domain optimization

Mesh-domain optimization in Momentum is coming soon.

Initial Mes

The mesher automatically optimizes the domain to suppress parts where the field is neglectable

	Generation		Generat	lion 2
	 Target Mesh 	Size	Automat	tic
	 Mesh Domai 	n Optimization	Off	
	 Conductor E 	dge Mesh Le	On	
	Minimum M	esh Size	Off	
Ad	laptive Refiner	ment	<inherit< th=""><th>from</th></inherit<>	from
1				
2	The second			
-				
4		-		
-				2
	V			
				3

- In case of large ground or power planes, the simulation space might still be too large to be efficient
- ADS 2020 Update 1.0 Mesh Domain Optimization to reduce the simulation space with 2 constraints
 - Much more stable than a cookie cut
- Automatically adapts for several critical nets to be simulated in series
 - No need to multiply layout views for each cookie cut

52

KEYSIGHT TECHNOLOGIES

Solver in RFPro

RF RFPro Setup - Advanced Simulator Setup

	Global	Overrides	
Solver			
Matrix solver	Automatic	-	
Mesh	Automatic		
Mesh density	Direct-dense		
Geometry overlap extraction	Iterative-dense		
Edge mesh	Direct-compressed		
Mesh reduction	<inherit from="" preset=""></inherit>		
Physical model	·		
Thick conductor model	Automatic		
Via conductor model	Automatic		
Preprocessor			
 Healing snap distance 	Automatic		
 Simplify layout 	On		
Ignore conductor shapes	Automatic		
Ignore conductor holes	Automatic		
	***** *****		••
			<u> </u>
Kevert		Done	Cancel

 \times

Lab 2

Lab 3

Summary

Solver in RFPro

MoM technology chooses automatically the best solver for your application

~2-3000 Unknown currents (N)

CPU time = A + B N + C N 2 + D N 3

where:

N = number of unknowns

The constant term **A** accounts for the simulation set up time. The meshing of the structure is responsible for the linear term, **BN**. The loading of the interaction matrix is responsible for the quadratic term and the solving of the matrix equation accounts for:

- Part of the quadratic term (when using the iterative solver)
- The cubic term (when using the direct solver)

Preprocessor in RFPro

RF	RFPro Setup	- Advanced Si	mulator Setup
----	-------------	---------------	---------------

	Global		Overrides					
Solver								•
Matrix solver	Automatic							
- Mesh						*		1
Mesh density	20 cpw						*	<i>.</i> *
Geometry overlap extraction	Normal							
Edge mesh	Off							
Mesh reduction	On							. °.
Physical model								
 Thick conductor model 	Automatic							
Via conductor model	Automatic						8	
- Preprocessor							*	
 Healing snap distance 	Automatic							
 Simplify layout 	On							2
 Ignore conductor shapes 	Automatic	Ignore (remove	e) conducto	or shapes up	to a v	vidth or	height of 5	5 mic
Ignore conductor holes	Automatic	Ignore (fill) cor	ductor hole	es up to a wi	dth or	height	of 5 micror	าร. 🗉
Revert			Done	Cancel				

 \times

Lab 1

Hotkey

Outline

Lab 2

Lab 3

Summary

Advanced RF Board Skills in ADS

Layout Healing

Closes unintentional gaps between adjacent shapes

- Ensures that stacked vias have only one joint boundary
- Eliminates acute angles

Merge

_ab '

Outline

56

Lab 3

Summar

Lab 2

Layout Simplification

 Layout simplification is required to reduce number of meshes without loss of accuracy

Simulation Options	
Preset: Default	Remove
Description Physical Model Preprocessor Mesh Solver Expert	
Global: All Shapes Global: Patterns Layer Specific	
Show Visual Aid	^
 Heal the layout nearby edges and vertices will be snapped together Auto-determine a safe snap distance (conservative) 	
O User specified snap distance: 0 mil 💌	
Merge shapes touching each other where possible shared edges in the mesh will not be preserved	
Simplify the layout vertex count will be reduced, without changing the topology Constraints (upper limits)	
Displacement 1 % of the wavelength 💌	
Shrinkage/growth 7.6 % or arc resolution 45 degrees	
Use different constraints for vias	
Displacement 1 % of the wavelength 🔻	
Shrinkage/growth 7.6 % or arc resolution 45 degrees	
Never change lines whose length exceeds 0 r	nil 🔻
Ignore shapes on the following purposes:	
dummy dummy2	~

Outlin

Advanced RF Board Skills in ADS

Lab 3

Guidance RFPro Setup for IC Design

Reasonable defaults for <u>IC Designs</u>:

- Mode: MomRF (switch to MomMW if status window indicates electrically large design)
- Ports: 'Auto'/'Direct' for most ports, TML only if intend design to be included in context with same transmission line widths at those port locations.
- Frequency plan: include DC in frequency plan
- Output Plan: only save currents if necessary for post-processing visualization (also uncheck 'Reduce to decrease size' in Model options if you do wish to visualize currents)
- Physical Model: 3D-distributed thick conductor model, 2D-distributed/Wire via model for most (3D Distributed for via in RF path)
- Preprocessor: displacement=0.1 um or auto, arc resolution = 5 degrees for arcs, 45 degrees for vias, use via merge options and/or metal fill options (when needed)
- Mesh: mesh density 200-1000 cells @ highest frequency, edge mesh (on for sheet conductors, off for thick conductors), thin layer overlap extraction (Normal for MIM caps, off otherwise), consider Layer Specific meshing if need finer/coarser mesh on specific layer(s)
- Solver: if using 'Auto-select' or 'Direct Compressed' ('Direct Dense' guarantees highest accuracy, at potential cost of more RAM and sim time)

Guidance RFPro Setup for Laminate/PCB

Reasonable defaults for Laminate/PCB Designs:

- Mode: MomRF (switch to MomMW if status window indicates electrically large design)
- Ports: 'Auto'/'Direct' for most ports, TML only if intend design to be included in context with same transmission line widths at those port locations.
- Frequency plan: include DC in frequency plan
- Output Plan: only save currents if necessary for post-processing visualization (also uncheck 'Reduce to decrease size' in Model options if you do wish to visualize currents)
- Physical Model: 3D-distributed thick conductor model, 2D-distributed/Wire via model for most (3D Distributed for via in RF path)
- Preprocessor: displacement=1 um or auto, arc resolution = 5 degrees for arcs, 45 degrees for vias
 Mesh: mesh density 20-60 cells @ highest frequency, edge mesh (on for sheet conductors, off for thick conductors), thin layer overlap extraction off, consider Layer Specific meshing if need finer/coarser mesh on
- specific layer(s)
- Solver: if using 'Auto-select' or 'Direct Compressed' ('Direct Dense' guarantees highest accuracy, at potential cost of more RAM and sim time)

Momentum RF vs. Momentum Microwave

- Physical structures radiate into free space (spherical waves) and into substrates (cylindrical waves)
- Radiation for electrically small structures is very small
- MomRF mathematically eliminates radiation
- Computes quasi-static Green's functions at a low frequency
- High accuracy possible even at very high frequencies (100 GHz or more) – just depends on electrical size of structure
- Approximate frequency limits are reported in the log file

S-parameter simulation S-parameter simulation started

Layout is electrically small below 18.4 GHz (space wave radiation) Substrate is electrically small below 8.05 GHz (surface wave radiation)

60

Automatic selection: direct dense matrix solver Using multi-threading (2 threads) Adaptive frequency sweep started Simulation frequency [1] = 0 Hz

Lab3 - RFPro EM-cosimulation Two-Stage RF Board Amplifier with SMT Components

- A 2-stage LNA built on a 2-layer board.
- SMT components (transistors, capacitors, inductors, resistors) are from a board design kit, all have component models.
- Interconnect lines are Layout based and will be simulated with EM.
- There are 4 ports (8 pins)
 - 2 pins RFin (Signal, Gnd)
 - 2 pins RFout (Signal, Gnd)
 - 2 pins VDC1 (Power, Gnd)
 - 2 pins VDC2 (Power, Gnd)

KEYSIGHT

- Setup the simulation

Outline

- Quick review of Momentum
- Lab1: Port Type Overview
- Lab2: Net Type Setup for Physical Model Simplified
- Lab3: Understand Mesh, Solver and Preprocessor
- Summary

Summary

- This Webinar help users to understand the port type (calibration type), physical model, mesh, solver and preprocessor setting of MoM technology (Momentum) in RFPro.
- There are different factors having to be taken into account when modeling. User have to
 understand the difference between condition to get accurate results. It is important to seek balance
 between cost and accuracy.
- ADS RFPro not only can do EM & Circuit co-simulation easily, but also check TDR/TDT impedance, near-field, far-field directly. It's a useful tool for users to analyze simulation quality.

KEYSIGHT TECHNOLOGIES