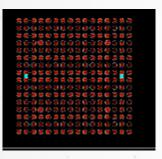
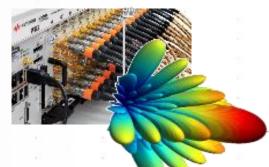
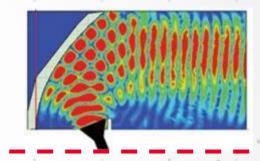
5G Boot Camp



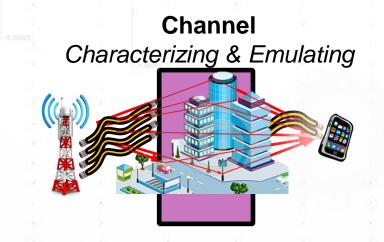

1.02411

7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity


Lots of Channels MIMO/Beamforming

Connect Design & Test *Components, Systems*



Life Beyond Connectors Over-the-Air

Performance on the Network Network Emulation

Field Testing and Drive Test

KEYSIGHT TECHNOLOGIES

3GPP UE & gNB Tx Conformance Test requirement docs

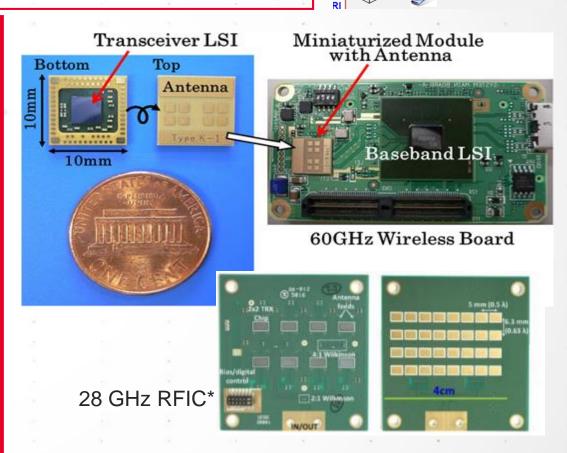
3GPP NR UE Tx test requirement	Minimum Requirement (2018-06)	Conformance Requirement (2018-09 draft)*	UE
Part 1: Range 1 Standalone	TS38.101-1 v.15.2.0	TS38.521-1 v.1.0.1	FR1, Conducted
Part 2: Range 2 Standalone	TS38.101-2 v.15.2.0	TS38.521-2 v.1.0.0	FR2, Radiated
Part 3: Range 1 and 2 Interworking operation with other radios	TS38.101-3 v.15.2.0	TS38.521-3 v.1.0.0	FR1 and FR2 CA. FN-DC** FR1 Conducted, FR2 Radiated

(*) v.1.0.x is still draft or pre-release status. (Official version should be v.15.x.x) (**) EN-DC: E-UTRA and NR Dual Connectivity

3GPP NR BTS Tx test requirement		Conformance Requirement	GNB
Part 1: Conducted testing		(2018-09 draft)* TS38.141-1 v.1.0.0	
Part 2: Radiated testing	TS38.104 v.15.2.0	TS38.141-2 v.1.0.0 🔇	FR1 and FR2, Radiated

(*) v.1.0.x is still draft or pre-release status. (Official version should be v.15.x.x)

Life Beyond Connectors


Free-space Path Loss

Active Antenna System (AAS) **RF/Antennas**

The Good News:

- Higher frequency antenna elements are smaller
- Easier to assemble into electronically steered arrays
- Reduced interference. Energy goes where it's needed
- Improve performance in dense crowds (5G goal)
- Higher frequencies → wider bandwidths: faster (5G goal)
 Challenges:
 - Antenna are directional
 - Increased complexity with more elements, very small for probing or conducted test
 - Multiple antenna arrays required for spherical coverage
 - Traditional cabled test methods obsolete OTA needed

* Image courtesy of Professor G. Rebeiz of U of Ca, SD

Far-Field Test Challenges with mmWaves

LONGER FAR-FIELD AND HIGHER PATH LOSS

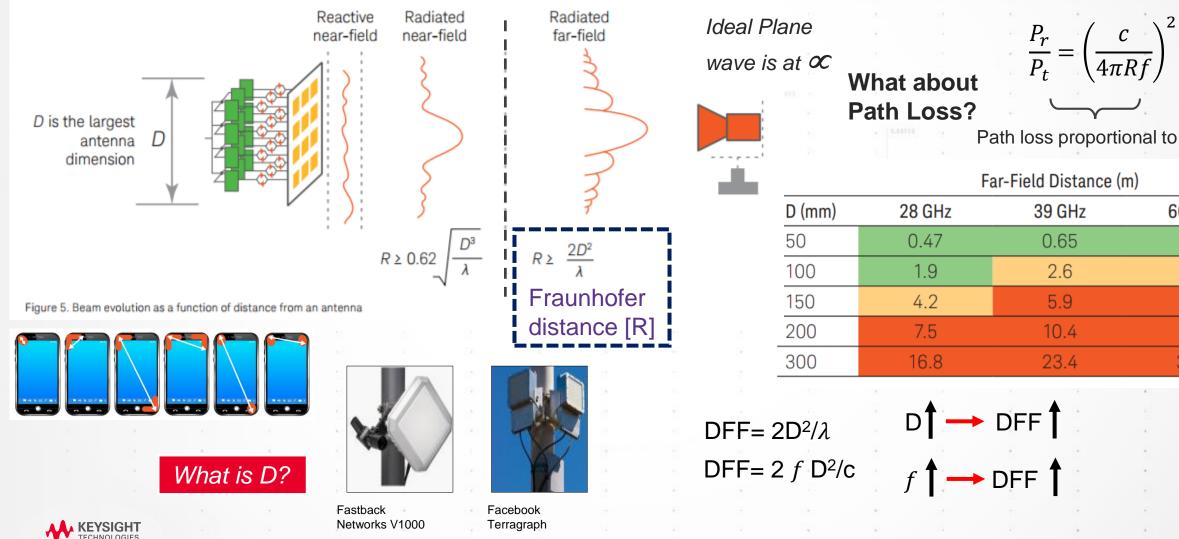
From Keysight White Paper: OTA Test for Millimeter-Wave 5G NR Devices and Systems

Friis Transmission Equation

 $G_t G_r$

60 GHz

4

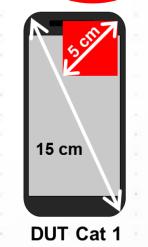

9

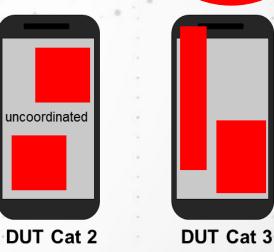
16

36.0

- 5

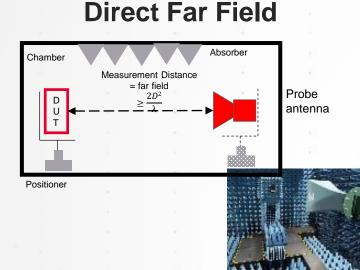
 R^2

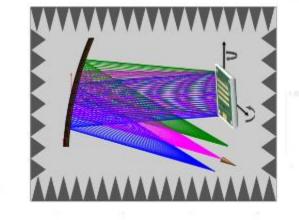

FR2 Measurement Challenges


HOW FAR IS THE FAR FIELD?

D (cm)	Freq. (GHz)	Far field (m)	Path Loss (dB)	Freq. (GHz)	Far field (m)	Path Loss (dB)	Freq. (GHz)		Path Loss (dB)
5	2	0.03	8.93	28	0.47	54.77	43	0.72	62.23
10	2	0.13	20.97	28	1.87	00.01	43	2.87	14.21
15	2	0.30	28.01	28	4.20	73.86	43	6.45	81.31
20	2	0.53	33.01	28	7.47	78.86	43	11.47	86.31
30	2	1.20	40.05	28	16.80	85.90	43	25.80	93.35
1			85 U		5 K		×	1. 1. 2.*	

TR 38.810 Table 5.3-1: DUT Categories


DUT category	Description					
Category 1	Maximum one antenna panel with D \leq 5 cm illuminated by test signal at any one time					
Category 2	More than one antenna panel D \leq 5 cm without phase coherency between panels illuminated at any one time					
Category 3	Any phase coherent antenna panel of any size (e.g. sparse array)					



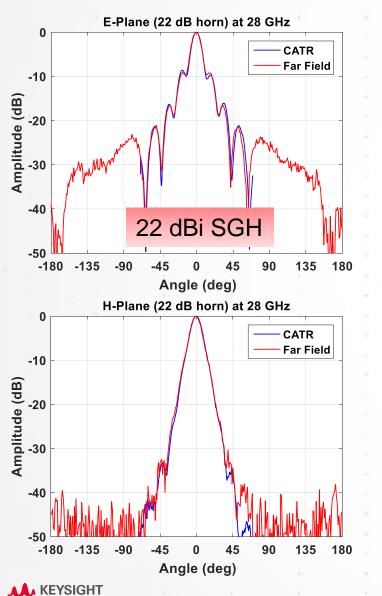
Common OTA Test Methods

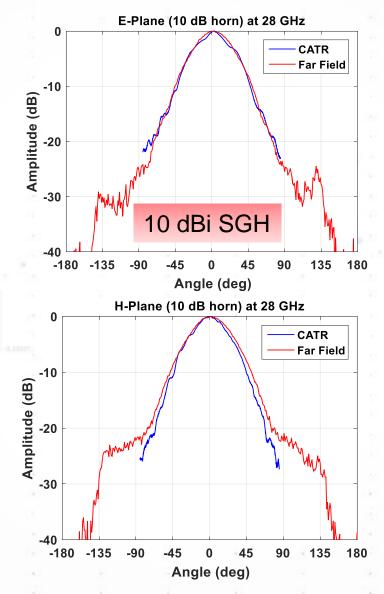
- ✓ Simple design, mature
- Measurement flexibility;
 - ✓ Antenna beam pattern characterization
 - Beamforming/beamsteering validation
- RF parametric tests (if S/N high enough)
 How devices operate
- × Subject to higher path loss
- Can get very large for smaller devices at mmWave frequencies
- × Can be slow (mechanical motion), expensive

- ✓ Measurement flexibility
 - Antenna beam pattern characterization
 - Beamforming/beamsteering validation
 - ✓ RF parametric tests
 - End-to-End performance (signaling)
- ✓ Small footprint, even for larger devices
- ✓ Lower path loss, better accuracy
- × Slow (limited by mechanical motion)× Expensive (slightly more than DFF)

Near-Field Scanning

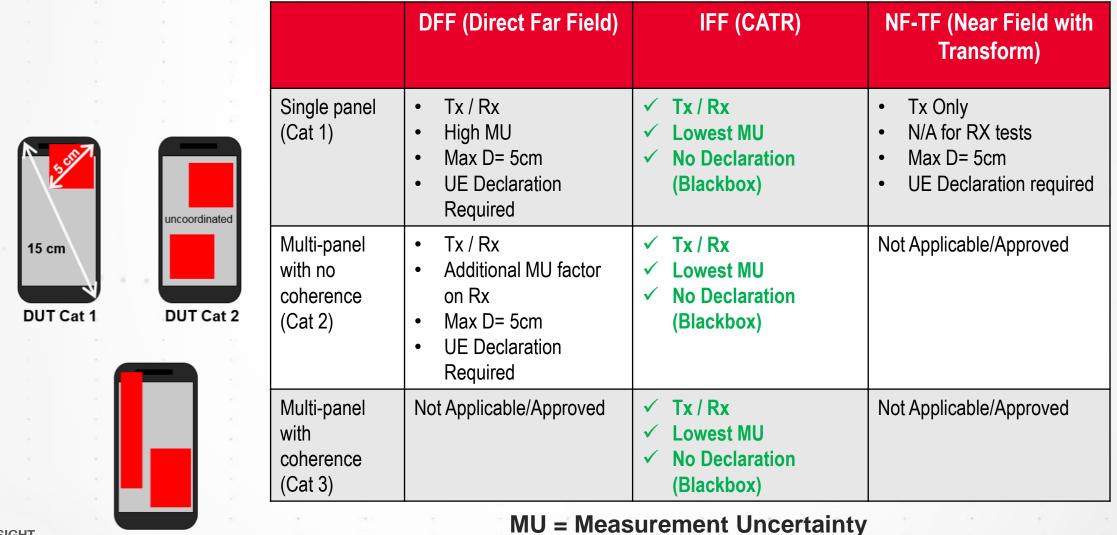
Image courtesy of NSI-MI


Small, lower cost (at mmWave?)


- ✓ Passive antenna;
 - ✓ Antenna beam pattern characterization
 - ✓ Beamforming/beamsteering validation
 - ✓ RF parametric tests (with phase recovery)
- Requires highly accurate positioners for mmWave
- × Applicability to modulated signals
- × Tx tests for active devices
- × Rx tests
- × Can be slow

Keysight CATR vs. Far Field Range*

http://allwavecorp.com/AntennaMeasurements.php


- Comparisons shown for high and low gain horn antennas
- Comparisons show high degree of correlation between the different types of chambers

- 22 dB horn : Sage SAR-2013-34-S2
- 10 dB horn : Pasternack PE9851-10

GREAT CORRELATION !

Measurement Systems for NR UE RF Test

3GPP TR 38.810 STUDY ON TEST METHODS (OTA)

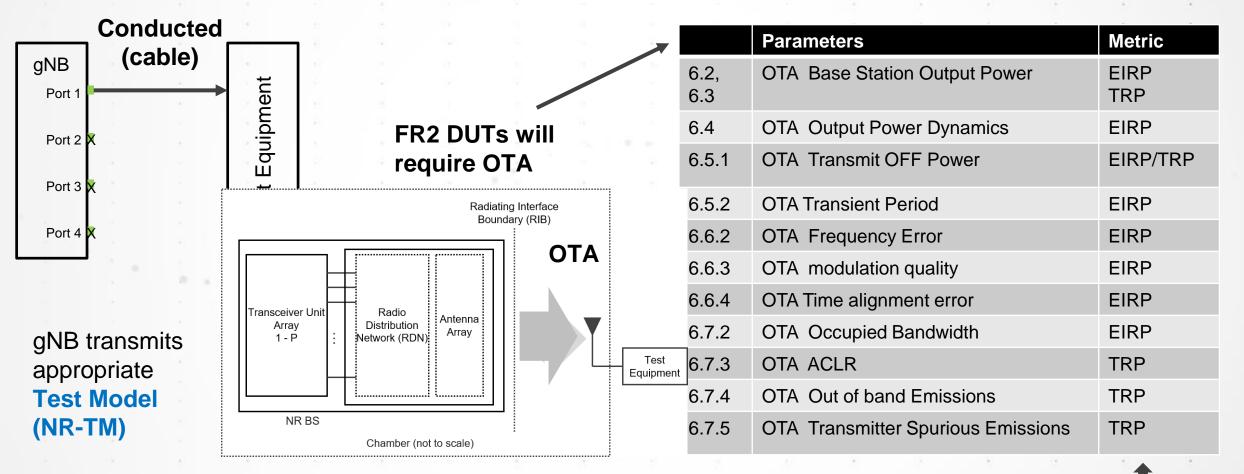
DUT Cat 3

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

3GPP gNB Conformance Tests (TS 38.141-1,2)

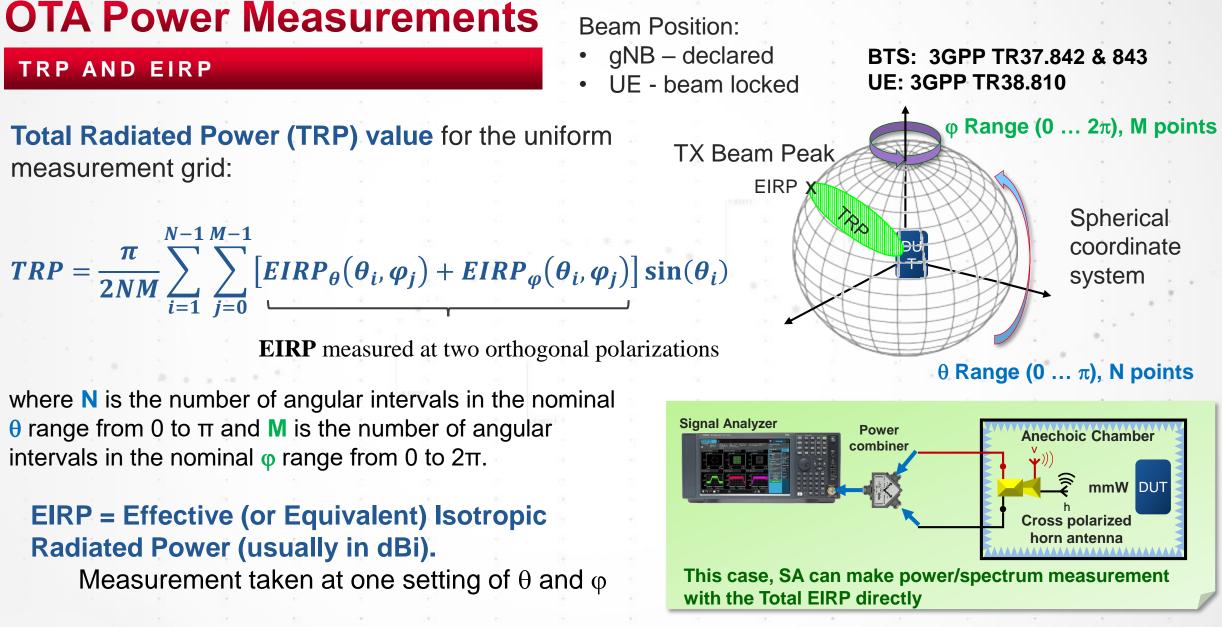
CHAPTER 6,7,8 MEASUREMENT DETAILS

3GPP NR gNB Conformance Test Summary (Conducted & Radiated)											
Chap 6, Tx Characteristics	Chap 7, Rx Characteristics Tests	Chap 8, Rx Performance Requirements Tests									
• Output Power	Reference sensitivity level	Performance requirements or PUSCH Multipath fading propagation of notions									
Output Power Dynamics (RE Power Control DR / Total Power DR /)	Dynamic range	UL timing adjustment HARQ-ACK multiplex d o PUSCH									
Transmit On/Off Power	 Adjacent Channel Selectivity (ACS) 	High speed train on lithins									
(TX Off Power / TX Transient Period)	Blocking characteristics	 Performance (equinements for PCCH Actimismo detection for sing ser FUCCH formation 									
 Signal Quality (Freq Error / EVM / Time Alignment Error /) 	Intermodulation characteristics	 CQL detection for PUCCH format 2 ACK missed detection or malti user PUCCH format 1a 									
Unwanted Emissions	In-channel selectivity	Performance Requirements for PLACH									
(Occupied BW / ALCR / Spurious /)	Spurious emissions										
Transmitter Intermodulation											
ummary	Summary	Summary									
Requires time aligned digitizers	Tests are performed open loop	• 3 tests performed class loop (implies real-time sig gen)									
Or digitizers with wide BW	 Tests require interfering signals 	 Tests require failing or 'wanted' & 'interfering' signals 									
	 Performance metric = BLER (calculated by eNB) 	 Performance memc = throughput (calculated by eNB) 									
KEYSIGHT		10									



Su

3GPP gNB Transmitter Tests (Chap 6)


3GPP TS 38.141-1 (Conducted) 3GPP TS 38.141-2 (Radiated)

BASIC CONFIG FOR MOST TESTS

gNB tests will likely follow the eNB very closely with changes added for FR2 OTA testing

OTA Measurement – gNB Spatial Requirements

OTA AAS BS DECLARATION

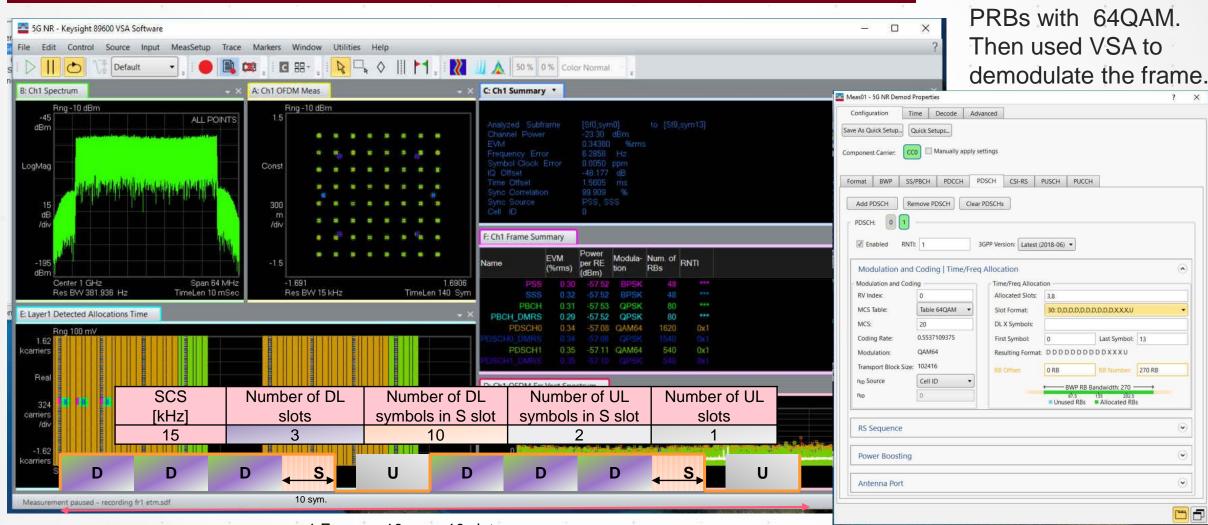
Example from 3GPP TR 37.843

Example declarations of an OTA Active Antenna System (AAS) BS with multiple beam widths and beam steering capability;

- For the minimum beam width case: beam width (θ and ϕ) =10°, maximum steering (θ and ϕ) = ±32.5°
- For the maximum beam width case: beam width (θ and ϕ) =35°, maximum steering (θ and ϕ) = ±25°

What about those NR gNB Test Models?

TS38.141-1 SECTION 4.9.2 NR TEST MODELS FOR FR1 TDD


Table 4.9.2.2-1:

Configurations of TDD gNB test models for NR FR1

Test model for FR1 TDD frame structure is SCS Number of DL slots Number of DL Number of UL Number of UL slots [kHz] symbols in S slot defined but not the physical parameters. symbols in S slot 15 3 10 30 6 4 12 60 (Note) 14 We can generate this frame structure and Note: There are two S slots. First S slot has 12 DL symbols followed by 2 flexible symbols; second S slot populate PRB with any modulation type has 6 flexible symbols followed by 8 UL symbols. (eq 64 QAM)NR FR1 S. U U S D D D D D **TDD SCS 15 kHz** 10 sym. NR FR1 D U U D D U U Π Π D D Π П **TDD SCS 30 kHz** 6 sym. NR FR1 DDDDDDDDDDDDD__\$ UUUUDDDDDDDDDDDDDD__\$ UUUU **TDD SCS 60 kHz** 12 sym. **Reference:** Slot #0 Slot #' Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 Slot #7 LTE TDD D D D S U D D D U UL/DL Config = 2 DwPTS Special Sf Config = 7 5 msec KEYSIGH⁻ 14 5G Boot Camp: 7 Key Measurement Challenges and Case Studies

What about those NR gNB Test Models?

VSA DEMOD OF NR TEST MODEL FOR FR1 50 MHZ TDD 64QAM

Used signal studio for

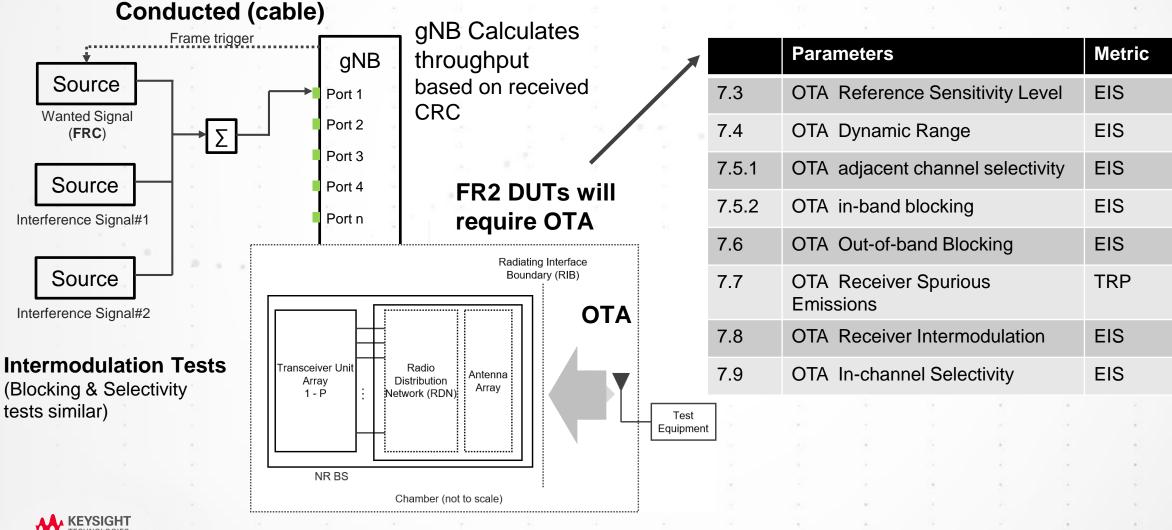
5G NR to generate a

15

FR1 TDD NR-TM

frame and filled all

1 Frame = 10 ms = 10 slots



3GPP gNB Receiver Characteristics (Chap 7)

ADDITIONAL TEST CONFIGS

3GPP TS 38.141-1 (Conducted) 3GPP TS 38.141-2 (Radiated)

16

OTA Sensitivity Measurements

TIS AND EIS

Effective Isotropic Sensitivity (EIS) is the measured sensitivity in a single direction (fixed θ and φ). Usually expressed in dBm.

Total Isotropic Sensitivity (TIS) value for the uniform measurement grid:

 φ Range (0 ... 2π), M points

Fixed Reference Channels (FRC) for gNB Rx Testing

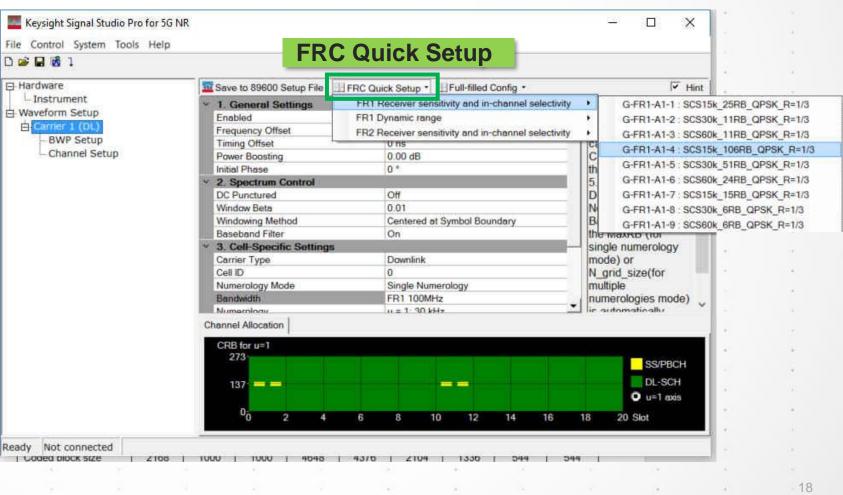
DEFINED IN ANNEX A.X IN TS 38.141-1 & 38.141-2

Annex A (normative): Reference measurement channels

KEYSIGHT

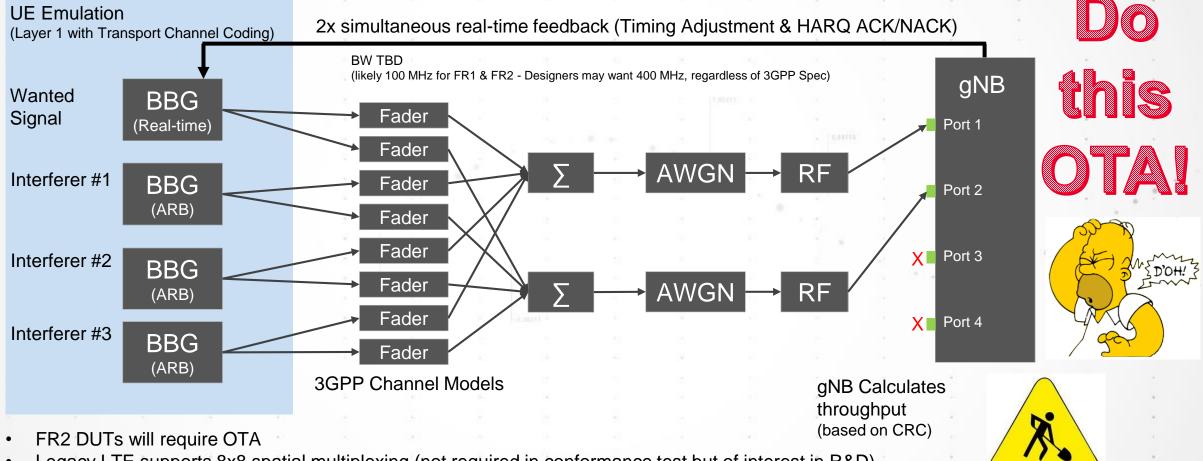
ECHNOLOGIES

A.1 Fixed Reference Channels for receiv and in-channel selectivity (QPSK, R


The parameters for the reference measurement channels are specified in table A.1-1 f channel selectivity.

The parameters for the reference measurement channels are specified in table A.1-2 for channel selectivity.

Reference channel	G-FR1- A1-1	G-FR1- A1-2	G-FR1- A1-3	G-FR1- A1-4	G-FR1- A1-5	G-FF A1-
Subcarrier spacing[kHz]	15	30	60	15	30	60
Allocated resource blocks	25	11	11	106	51	24
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPS
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	2152	984	984	9224	4352	208
Transport block CRC (bits)	16	16	16	24	24	16
Code block CRC size (bits)	-	<u>i</u>	100 A	24	99 1	*
Number of code blocks - C	1	1	1	2	1	1
Coded block size	2168	1000	1000	4648	4376	210


Table A.1-1: FRC parameters for FR1 receiver sensitivity and ir

Signal Studio Pro for 5G NR N7631C

3GPP gNB Receiver Performance Requirements (Chap 8)

EXAMPLE 4X2 TEST CASE

- Legacy LTE supports 8x8 spatial multiplexing (not required in conformance test but of interest in R&D)
 - Depending on gNB capability, some tests require: 1x2, 4x2, 2x2, 3x2, 3x4, 3x8

WORK IN PROGRESS

3GPP UE Conformance Test Requirements: Radiated

TS38.521-2 V.1.0.0 (V.2018-09) - DRAFT

TS38.521-2Transmitter TestMeasurementOTA6.2.1UE maximum output power reduction (MPR)Chan PowerEIRP, TRP6.2.2UE maximum output power reduction (MPR)Chan Power <ffs>6.2.3UE maximum output power with additional requirementsChan Power<ffs>6.2.4Configured transmitted powerChan PowerEIRP, TRP6.3.1Minimum output powerChan PowerEIRP, TRP6.3.2Transmit OFF powerTx On/Off PowerTRP6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP?6.4.1Frequency errorMod Analysisq- & j - each6.4.2.1Error Vector MagnitudeMod Analysisq- & j - each6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis<ffs>6.4.2.4EVM equalizer spectrum BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.2Additional Spectrum emission maskSEMTRP6.5.3Spurious emissionsACPTRP</ffs></ffs></ffs></ffs>	A	4 (A	A	
6.2.2UE maximum output power reduction (MPR)Chan Power <ffs>6.2.3UE maximum output power with additional requirementsChan Power<ffs>6.2.4Configured transmitted powerChan PowerEIRP, TRP6.3.1Minimum output powerChan PowerEIRP6.3.2Transmit OFF powerTx On/Off PowerTRP6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod AnalysisEIRP?6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis<ffs>6.4.2.4EVM equalizer spectrum flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingOBWEIRP6.5.2.1Spectrum emission mask Additional Spectrum emission maskOBWEIRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	TS38.521-2	Transmitter Test	Measurement	ΟΤΑ
reduction (MPR)Chan Power <ffs>6.2.3UE maximum output power with additional requirementsChan Power<ffs>6.2.4Configured transmitted powerChan PowerEIRP, TRP6.3.1Minimum output powerChan PowerEIRP6.3.2Transmit OFF powerTx On/Off PowerTRP6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP6.3.4Power controlEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.3In-band emissions (IBE)Mod Analysis<ffs>6.4.2.4EVM equalizer spectrum flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.2Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs></ffs>	6.2.1	UE maximum output power	Chan Power	EIRP, TRP
additional requirementsChan PowerEIRP, TRP6.2.4Configured transmitted powerChan PowerEIRP, TRP6.3.1Minimum output powerChan PowerEIRP6.3.2Transmit OFF powerTx On/Off PowerTRP6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP6.3.4Power controlEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4,EVM equalizer spectrum flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.2Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs>	6.2.2	• •	Chan Power	<ffs></ffs>
6.3.1Minimum output powerChan PowerEIRP6.3.2Transmit OFF powerTx On/Off PowerTRP6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP6.3.4Power controlEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod AnalysisEIRP?6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingOBWEIRP6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Additional Spectrum emission maskACPTRP</ffs></ffs>	6.2.3	· · ·	Chan Power	<ffs></ffs>
6.3.2Transmit OFF powerTx On/Off PowerTRP6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP6.3.4Power controlTx On/Off PowerEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod AnalysisEIRP?6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4,EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	6.2.4	Configured transmitted power	Chan Power	EIRP, TRP
6.3.3Transmit ON/OFF time maskTx On/Off PowerEIRP6.3.4Power controlEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	6.3.1	Minimum output power	Chan Power	EIRP
6.3.4Power controlEIRP?6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4,EVM equalizer spectrum flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs>	6.3.2	Transmit OFF power	Tx On/Off Power	TRP
6.4.1Frequency errorMod Analysisq- & j- each6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	6.3.3	Transmit ON/OFF time mask	Tx On/Off Power	EIRP
6.4.2.1Error Vector MagnitudeMod Analysisq- & j- each6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4,EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1,Spectrum emission mask MaskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	6.3.4	Power control		EIRP?
6.4.2.2Carrier leakageMod AnalysisEIRP?6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4,EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1,Spectrum emission mask maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	6.4.1	Frequency error	Mod Analysis	q- & j- each
6.4.2.3In-band emissions (IBE)Mod Analysis <ffs>6.4.2.4,EVM equalizer spectrumMod Analysis<ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask Moditional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs></ffs></ffs>	6.4.2.1	Error Vector Magnitude	Mod Analysis	q- & j- each
6.4.2.4, 6.4.2.5EVM equalizer spectrum flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis <ffs>6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP</ffs>	6.4.2.2	Carrier leakage	Mod Analysis	EIRP?
6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingOBWEIRP6.5.1Occupied bandwidthOBWEIRP6.5.2.1, 6.5.2.2Spectrum emission mask Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP	6.4.2.3	In-band emissions (IBE)	Mod Analysis	<ffs></ffs>
6.5.2.1, 6.5.2.2Spectrum emission mask Additional Spectrum emission maskSEMTRP6.5.2.3Adjacent channel leakage ratioACPTRP	•	flatness, EVM spectrum flatness for pi/2	Mod Analysis	<ffs></ffs>
6.5.2.2Additional Spectrum emission maskImage: Comparison mask6.5.2.3Adjacent channel leakage ratioACPTRP	6.5.1	Occupied bandwidth	OBW	EIRP
, ,		Additional Spectrum emission	SEM	TRP
6.5.3 Spurious emissions Spur Emissions TRP	6.5.2.3	Adjacent channel leakage ratio	ACP	TRP
	6.5.3	Spurious emissions	Spur Emissions	TRP

3GPP TS 38.521-2 (Radiated) – UE FR2

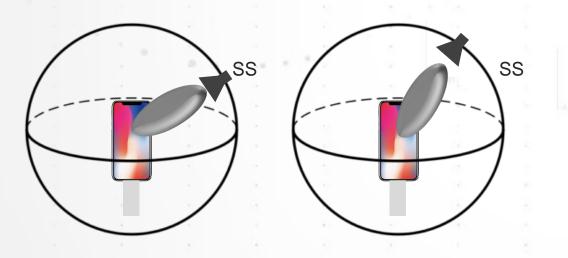
TS38.521-2	Receiver Test	Metrics	Assumed Link Direction
7.3	Reference sensitivity level	EIS CDF	Each beam peak search grid
7.4	Maximum input level	Beam peak	RX beam peak direction
7.5	Adjacent Channel Selectivity (ACS)	Beam peak	RX beam peak direction
7.6.2	In-band blocking	Beam peak	RX beam peak direction
7.6.3, 7.7	Out-of-band blocking and Spurious response	FFS	FSS
7.9	7.9 Receiver Spurious emissions		TX beam peak direction
7.10	Receiver image	FFS	FFS

FFS – For Further Study

KEYSIG

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

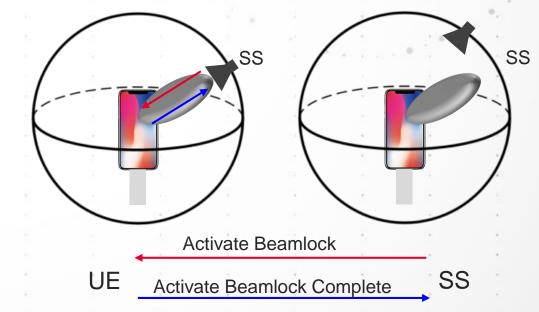
3GPP UE Test Requirements: Radiated


UE BEAMLOCK FUNCTION (UBF)

3GPP TS 38.521-2 (Radiated) – UE FR2

21

Without UE Beamlock Function (UBF), the UE keeps forming the beam towards the SS


 Required for Spherical Coverage, TX & RX Beam Peak Searches, EIS, EIRP measurements

The **UBF** is intended for making the UE to lock the UE antenna pattern once it has formed a beam towards the base station (SS) direction

Required for <u>TRP</u> measurements

 Recommended to prevent the beam from moving when performing measurements at low SNRs

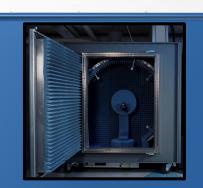
Keysight OTA Solutions for mmWave UE Test

FROM R&D TO CONFORMANCE TO CARRIER COMPLIANCE

UE Calibration / Array Calibration / Functional / Protocol Signaling / Performance / Demod tests

Compact Antenna Test Range (CATR) or IFF

- Multiple sizes
- Single AoA
- Indirect Far-field
- 1x dual polarized probe


Black-box testing - 3GPP Approved Solution for RF Test

Antenna / RF Parametric / TRP & TIS / Functional (incl. beam tracking) / Protocol testing / Throughput (clean channel)

- Multiple AoA
- Far-field
- 3-4 dual polarized probe
- 45° 2D arch
- Benchtop installation

Functional (beam forming/ Protocol testing

3D MPAC

- Multiple AoA
- Far-field
- 4 out of 6 X-polarized probes
- 180° basic 3D or sectorized

Performance test (with fading – 38.901) / RRM (HO & Throughput) / Virtual drive test / Beam Management

Multi-Channel 5G Testbed for gNB

3GPP CONFORMANCE READY - HIGH PERFORMANCE

Test Signal 2x2 MIMO at 28 GHz

Key Features

44 GHz Signal Creation / 110 GHz Analysis

Multi-channel

High Output Power

• 2 GHz signal Creation BW

110 GHz BW Demodulation Analysis

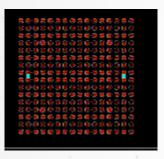
• Swept-tuned measurements to 110 GHz

• Import S-Parameters to de-embed test fixture

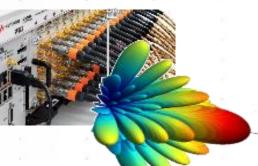
DC Power Analyzer

VXG

KEYSIGH

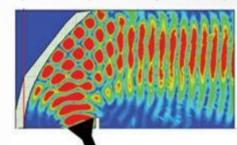

UXR UXA 44 GHz Dual Ch. Source 110 GHz Oscilloscope 110 GHz Signal Analyzer 5G Boot Camp: 7 Key Measurement Challenges and Case Studies

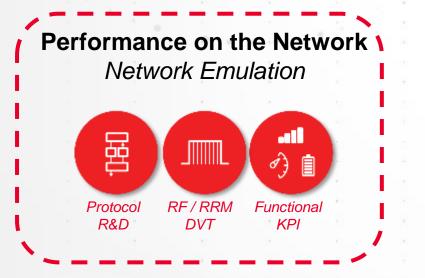
Device Under Test


Cross-polarized 28 GHz phased array

7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity

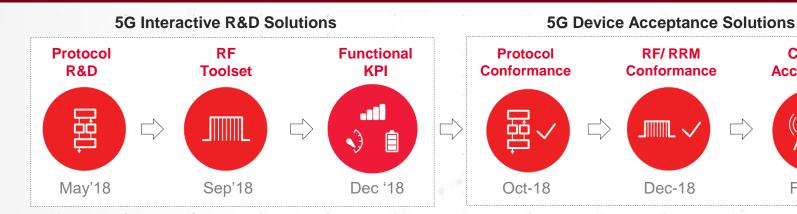

Lots of Channels MIMO/Beamforming



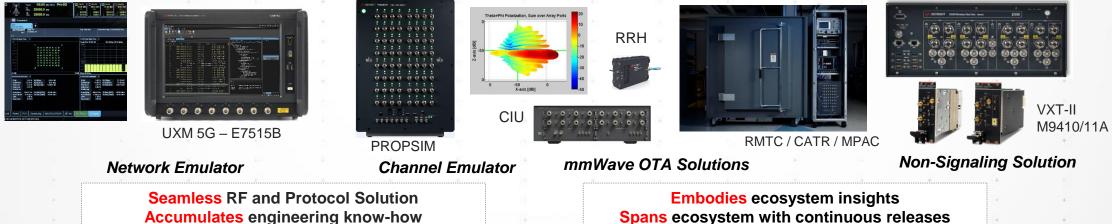
Connect Design & Test Components, Systems

Life Beyond Connectors Over-the-Air

Channel Characterizing & Emulating


Field Testing and Drive Test




KEYSIGHT TECHNOLOGIES

Get the fastest path to 5G Solutions

TARGETING CHIPSET AND DEVICE WORKFLOW

... ACCELERATE TOWARDS NEW 5G DEVICES

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

5G MFG Solutions

Manufacturing

Apr '18

EXM - E6640A

Carrier

Acceptance

((°))

Future

5G Device End-to-End Workflow

PROTOCOL DEVELOPMENT

5G Interactive R&D

Emulator

Channel

Emulator

mmWave OTA Solutions

Early protocol development while keeping up with evolving 5G standards;

- Progress stack and gain insights to optimize performance
- Customize scripts, automate efficiently, and debug quickly
- Leverage work across workflow stages, stay current with standards cost effectively

Key Features:

- ✓ Earliest availability of new 5G features
- Replicate desired network behavior whilst reducing test complexity with Built-in Protocol State Machine and Dynamic Control Points
- ✓L1/L2 parameter change without programming
- Flexible automation and logging

Results viewer

Sub-6 GHz and mmWave - Conducted and OTA

Modify network behaviour easily

5G PROTOCOL R&D TOOLSET

- Allow dynamic L1/L2 parameter changes without the need for programming
- Very useful in early development testing of prototypes

General DL Scheduling UL	Schedulin	g																		
Resource Allocation Type		•						т	ransmi	ssion N	lode		тмі			•			0	
Resource Block Allocation					-		- 12	-			-					10			-	
40540 (BT 108) (BT 108)	-			-100	=	1		=	-	-		i e	1 20			1.00	01		100	
- FERSON AND THE PARTY OF THE P					00	- 01	-62	63	64	65	66	67	65	69	70	71	72	73	74	
REIS-00 75 76 77 78 70	80 8	1 82	83	84	85	10	87	88	39	90	01	92	95	04	95	95	97	98	-00	
xPDSCH Start Symbol Symbol 2				Transf MCS Index MCS Index					9											
xPDSCH Stop Symbol	Symbol 1	2 🔻	DL MMO Freed Rome Ram					Rank Rank 1												
xPUCCH Resource Index	0		HARQ Auto Ack																	
DL PCRS	No PCRS	s •						S	crambl	ing Cod	de Id		0		•					
UCI Request Configuration (Using xPUC	CH - DCI E	31/B2)	Allo	Allocation Mode Configuration								xPDCCH Search Space Configuration								
Request Type	None	•	Re	source	Alloca	ation M	ode	No	rmal			•	DCI Allocation Mode				D	lynamic	•	
			Ant	enna P	orts C	onfigur	ation	11					Agg	regation	n Level		2		•	
				Single Layer Transmission 1 La				ayer -	Port 8		•	Ofdm Symbol Index Dyr			ynamic	•				

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

招

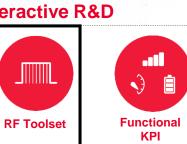
5G logging

5G PROTOCOL R&D TOOLSET

- Displays all layers of the protocol stack; PHY, MAC, RLC, RRC, PDCP
- Filtering allows the user to view the data of interest
- Advanced search features and bookmarks make debugging easier
- User friendly as all information needed is available in one view

Log Viev	/er										Collect KL	V Logs 📼 ? 🗕 🗖
Home	View	Control	KPI Control									
Save As	Close F		ts Previous Ne result res									
File	_		Search	Tools					D 1 1		- 0. 24	Overview •
80202.alf									Details		• 4 X	Overview • 4
mary Lo	g Records	KPI Viev	v							1asterInformationBlock rotocol: RRC, Version: R15 Jan 2018, Record: BCCH-BCH-I	Message	🗢 💙 PASS
Index	Icons		Protocol	Record	Source	Destination	Summary	Frame	▲ Fields			
66369			Developers AP	Property Set	\Test Control\De		E-Cell A->ULFrequency = 1950	^		CH-Message		
66370			Developers AP		\Test Control\De		E-Cell A->ULEarfcn = 18300		⊿ mes	age I-Bandwidth: n6		
66373			Developers AP	Property Set	\Test Control\De		E-Cell A->DLFrequency = 2140			hich-Config		
66374			Developers AP		\Test Control\De		E-Cell A->DLEarfcn = 300			phich-Duration: normal		
66375			Developers AP	Property Set	\Test Control\De		E-Cell A->PhysicalLayerCellIdentity			phich-Resource: oneSixth		
66376			Developers AP	Property Set	\Test Control\De		E-Cell A->PhysicalLayerCellIdentity(ystemFrameNumber: 0000000		
66377		\longrightarrow	Developers AP	Property Set	\Test Control\De		E-Cell A->TimingOffset = 0			chedulingInfoSIB1-BR-r13: 0 pare: 00000		Filters • 4
66378		\longrightarrow	Developers AP	Property Set	\Test Control\De		E-Cell A->AntennaCount = 1		,	pare: 00000		Text Time
66379		\longrightarrow	Developers AP	Property Set	\Test Control\De		E-Cell A->NumAntennaElements =					
66380		\longrightarrow	Developers AP	Property Set	\Test Control\De		E-Cell A->AntennaMapping = ANTE					Protocols Sources
66381		\rightarrow	Developers AP	Property Set	\Test Control\De		E-Cell A->Enabled = VARIANT_TRU					
66382			Developers AP!		\Test Control\De		E-Cell A->EtwsPrimaryNotificationE					Protocol
66383			Developers AP		\Test Control\De		E-Cell A->EtwsSecondaryNotificatio					⊿ 📝 3GPP
66389		\longrightarrow	RRC	BCCH-BCH-Message	\Protocol\3GPP\		MasterInformationBlock					
66390		\longrightarrow	Developers AP		\Test Control\De		E-Cell A->Macs->Mac [1]->SIs->M]					► V PHY
66393		\longrightarrow	RRC	BCCH-DL-SCH-Message	\Protocol\3GPP\I		systemInformationBlockType1					
66394			Developers AP		\Test Control\De		E-Cell A->Macs->Mac [1]->SIs->SIE					MAC
66397		\longrightarrow		BCCH-DL-SCH-Message	\Protocol\3GPP\		systemInformation					► ✓ RRC
66398			Developers AP		\Test Control\De		E-Cell A->Macs->Mac [1]->SIs->SI-					NR5G
66401			Developers AP		\Test Control\De		E-Cell A->Signals->AddNew(Signal		Hex			🔺 🗹 HOST
66403			Developers AP		\Test Control\De		E-Cell A->Signals->AddNew(Signal					PHY
66405			Developers AP		\Test Control\De		E-Cell A->Signals->AddNew(Signal		\BCCH-BCH-M			MAC
66407			Developers AP		\Test Control\De		E-Cell A->Signals->AddNew(Signal		Address	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0E	D 0E 0F	► RRC
66408			Developers AP		\Test Control\De		E-Cell A->PhysicalChannels->AddN		00000000	00 00 00		
66409			Developers AP		\Test Control\De		E-Cell A->PhysicalChannels->AddN					Uncheck all Load/Save Original
66410			Developers AP		\Test Control\De		E-Cell A->TransportChannels->Add	_				Loaded: None
66411		\rightarrow	Developers ΔP	Method Called	\Test Control\De		F-Cell A->TransnortChannels->Rch					Filters Bookmarks


昭


5G Device End-to-End Workflow

R&D CHALLENGES - RF DVT

Protocol

R&D*

More RF bands, wider bandwidths, and beamforming;

- Wideband calibration and verification
- New waveforms, flexible numerology
- Beamforming & beam management
- More band combination complexity

DVT = Design Validation Test

Key Features:

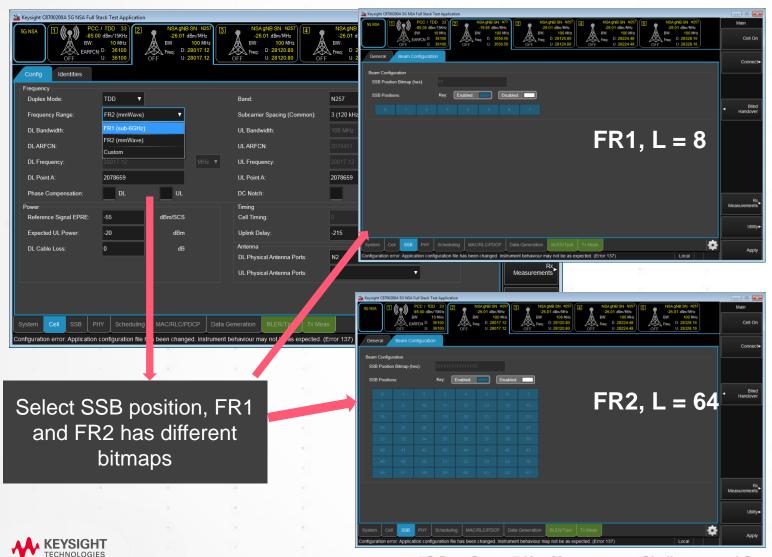
- ✓ 5G NR support
- RF Test Application
- ✓ Automation & Scripting
- ✓ Pre-conformance ready
- Traceability to conformance

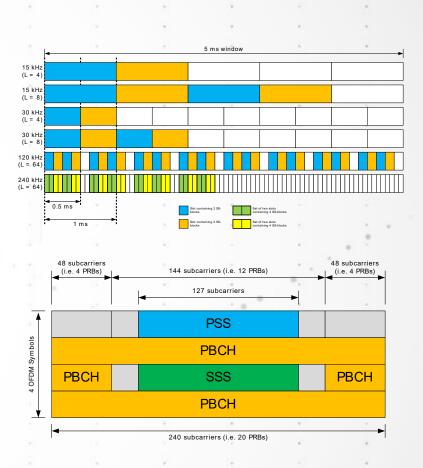
Sub-6 GHz and mmWave - Conducted and OTA


mmWave OTA Solutions

Channel

Emulator

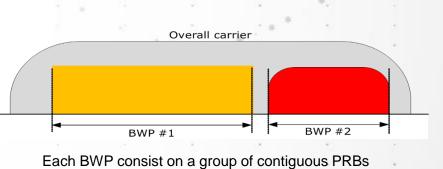

SINGLE CELL AND CARRIER AGGREGATION



KEYSIGHT

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

BEAM CONFIGURATION

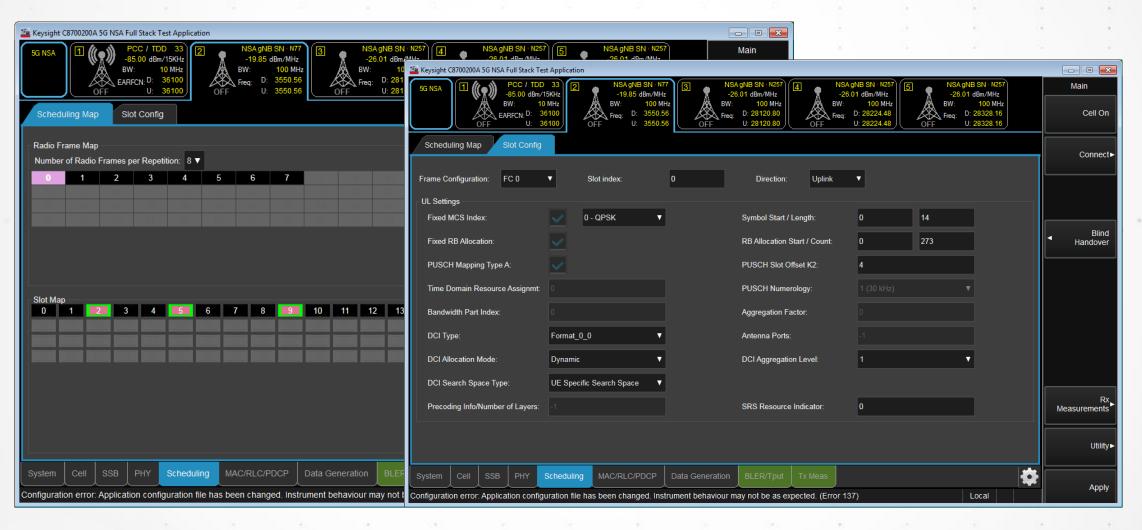


SSB includes 1 PSS, 1 SSS and 2 PBCH OFDM symbols the random access, transmitted over the same single antenna transmission scheme

PHYSICAL LAYER PARAMETERS

	8 R .	
🚈 Keysight C8700200A 5G NSA Full Stack Test Application		- • •
5G NSA 1 PCC / TDD 33 -85.00 dBm/15KHz BW: 2 NSA gNB SN N77 -19.85 dBm/MHz BW: 3 BW: 10 MHz BW: BW: 10 MHz Freq: D: 3550.56 OFF 0 Bandwidth Part HARQ PDSCH PDSCH DMRS PDCCH	NSAgNE SN NSN SN SN SN SN NSAgNE SN	Main Cell On
		Connect►
Initial Bandwidth Part		
DL Initial BWP Subcarrier Spacing: 1 (30 kHz)	UL Initial BWP Subcarrier Spacing: 1 (30 kHz)	
DL Initial BWP Starting CRB: 0	UL Initial BWP Starting CRB: 0	
DL Initial BWP Number of PRBs: 273	UL Initial BWP Number of PRBs: 273	
		Blind Handover
Carrier Bandwidth Parts		L
DL First Active Bandwidth Part: 0	UL First Active Bandwidth Part:	
Configuration		
O Downlink Uplink		
Setting 1st Bandwidth Part 2nd Bandwidth Part	3rd Bandwidth Part 4th Bandwidth Part	
Enabled:		
BWP ID: 0		
Starting CRB: 0 0		
Number of PRBs: 273 0		Rx Measurements
Subcarrier Spacing: 1 (30 kHz)		1.163124
Extended Cyclic Prefix:		Utility►
System Cell SSB PHY Scheduling MAC/RLC/PDCP Data G	Generation BLER/Tput Tx Meas	
Configuration error: Application configuration file has been changed. Instrument t		Apply

Define DL and UL Bandwidth parts; starting CRB, duration expressed in PRBs, Sub Carrier Spacing, Code Prefix

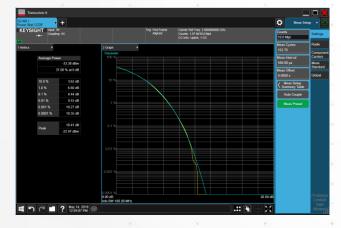

PHYSICAL LAYER PARAMETERS

SG NSA PCC / TDD 33 -85.00 dBm/15KHz BW: NSA gNB SN •N77 -19.85 dBm/MHz BW: Image: State of the stat	NSA gNB SN - N257 Main -26.01 dBm/MHz -26.01 dBm/MHz BW: 100 MHz BW: 100 MHz req: D: 28120.80 U: 28120.80 DFF U: 28224.48 OFF U: 28328.16 Cell On Keysight C8700200A 56 NSA Full Stack Test Application Stack Test Application Direction Direction		•
DL HARQ Num DL Harq Processes: 10 Enable Spatial Bundling (PUCCH): Enable Spatial Bundling (PUSCH): UL HARQ Num UL Harq Processes: 10	SG NSA PCC / TDD / 33 S0 of dbm/NHt; BW: 10 MHt U Stop dbm/NHt; BW: 10 Mt; DFF U Stop dbm/NHt; BW: 10 Mt; DFF U Stop dbm/NHt; DFF U Stop dbm	257 Main Iz IHz 16 Cell On	HARQ channel con
System Cell SSB PHY Scheduling MAC/RLC/PDCP Data Genera Configuration error: Application configuration file has been changed. Instrument behav The second	System Cell SSB PHY Scheduling MAC/RLC/PDCP Data Generation BLER/Tput Tx Meas 2onfiguration error. Application configuration file has been changed. Instrument behaviour may not be as expected. (Error 137) Local	Rx Measurements Utility Apply	

HARQ, DL and UL channels and signals configuration

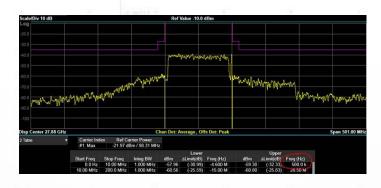
SCHEDULING

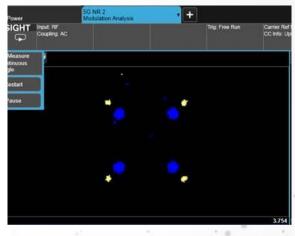
5G Boot Camp: 7 Key Measurement Challenges and Case Studies


RF test on-a-call

TRANSMITTER


Channel Power


Power Statistics


Occupied Bandwidth

Spectrum Emission Mask

Modulation Parameters

IQ Waveform

KEYSIGHT TECHNOLOGIES

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

RF test on-a-call

RECEIVER

Rx Measurements

- Cell Power Selection
- Sensitivity through ACK/NACK count
- BLER is the Rx
 performance metric
- Throughput

RF Automation Toolset

Test Campaign

- · Add test cases into one Test Mode Condition
- Add multi Test Mode Condition into Test Plan

Test Condition

- Set measurement Band, SCS, Bandwidth and Channel
- Load 3GPP default H/M/L channel from database

Test Cases

- All test cases refer to 3GPP 38.521 chapter 6 and chapter7
- Load 3GPP default test condition like RB Allocation, OFDM type and MCS.

Test Log Panel

Error information and SCPI command Logs

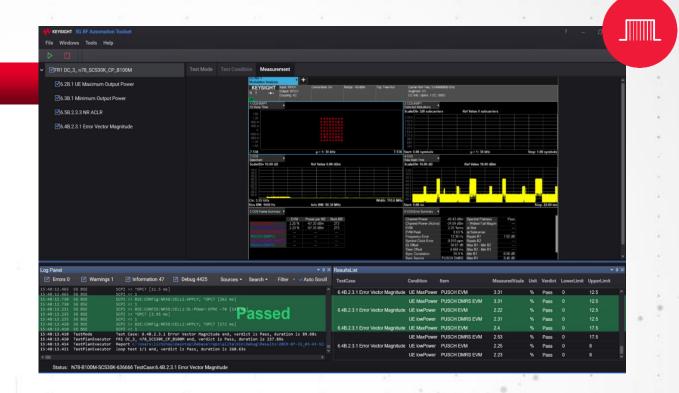
Test Result List

- → Result display with P/F indication
 - Automatically export result to csv and Excel files.

Others

- Support report in text and CSV format
- Support adb command for flight mode

KEYSIGHT						
e Windows Setting Help						
CheckBox1						
N78_SCS30K_B60M, B80M, B100M		TestMode	Config Test Condition Mea	asurement		
☑6.2.1 UE maximum output power		NR	✓ NR Cell			Test Cases
€6.3.2 Transmit OFF power		LTE	NR Cell	CELL1		6.3.1 Minimum output power
✓6.4.1 Frequency error			FR	FR1		6.4.1 Frequency error
✓ 6.4.2.1 Error Vector Magnitude			Duplex Mode	TDD		6.4.2.1 Error Vector Magnitude
✓6.5.1 Occupied bandwidth			Band SCS	N78	× U	 ○ 6.4.2.2 Call of leadage ○ 6.4.2.3 In-band emissions ○ 6.4.2.4 EVM equalizer spectrum flatness
			 Bandwidth Selection 	0 (15 kHz)		6.5.1 Occupied bandwidth
			Test Channel Bandwidth			6.5.2.2 Spectrum Emission Mask 6.5.2.4.1 NR ACLR
			✓ Channel Selection			 7.3.2 Reference sensitivity power level 7.4 Maximum input level
N78_SCS15K_B10M, B20M			3GPP Standard Channel	Image: A marked and and and a marked and a marked and a marked and and a marked and a marked and and and and and and and and and an		
			ARFCN DL List			
✓6.4.2.1 Error Vector Magnitude			✓ Others			
✓6.4.1 Frequency error			DownLink Power (dBm)	-70		
,,,,,,, _			DownLink Loss (dB)	2		
			UpLink Expected Power (dBn	n) 15		
Panel				₹ ₽ × ResultsList		
Errors 0 🗹 Warnings 0 🗹 Informati	ion 0 🛛 🗹 Debug 16		Sources - Search			-
1:41.863 PluginManager Found version 1.0 1:41.863 PluginManager Found version 1.4 1:41.865 PluginManager Found version 1.4 1:41.865 PluginManager Searched 44 Assem 1:41.921 PluginManager Loaded Keysight.T 1:42.170 Settings GuiControlSetting 1:53.742 PluginManager Loaded Keysight.T 1:53.749 PluginManager Loaded Alita. [63	.0 of Alita. .227+348d4f73 of Keysig .9 of Keysig blies. [264 ms] ap.Engine. [637 us] ap.Gui.Controls. [231 u gs loaded from C:\Users ap.Plugins.UXM_Driver.	.exe [263 u ght.Tap.Plu ght.Tap.Plu us] s\hongligu\		Settings\GUI Controls.xml		
Idle						

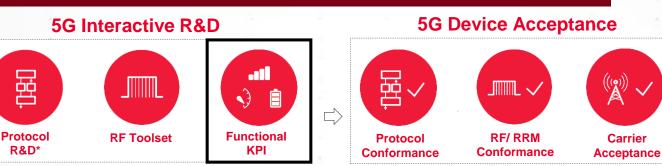


RF Automation Toolset 5G Boot Camp: **7 Key Measurement Challenges and Case Studies**

RF Automation Toolset

REPORTING TOOLS

- Real-time measurements (via X-Apps), logs and results are visible in the user interface
- Campaign summary reports may be generated in .csv and .xlsx formats


Time	System	Test Case	Band	Bandwidth [MHz]	SCS [kHz]	ARFCN	Freq [MHz]	Expect Power [dBm]	OFDM	Modulation	RB Allocation	Condition	ltem	Lower Limit	Value	Upper Limit	Unit	P
)19-07-31T15:58:30	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QPSK_2	InnerFull	UE MaxPower	PUSCH EVM	0	6.66	17.5	%	Pa
												UE MaxPower	PUSCH DMRS EVM	0	5.96	17.5	%	P
)19-07-31T15:58:38	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QPSK_2	InnerFull	UE lowPower	PUSCH EVM	0	2.1	17.5	%	F
												UE lowPower	PUSCH DMRS EVM	0	2.24	17.5	%	F
)19-07-31T15:58:47	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QPSK_2	OuterFull	UE MaxPower	PUSCH EVM	0	3.06	17.5	%	1
												UE MaxPower	PUSCH DMRS EVM	0	2.78	17.5	%	
)19-07-31T15:58:57	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QPSK_2	OuterFull	UE lowPower	PUSCH EVM	0	2.13	17.5	%	
												UE lowPower	PUSCH DMRS EVM	0	2.21	17.5	%	Т
)19-07-31T15:59:06	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QAM16_10	InnerFull	UE MaxPower	PUSCH EVM	0	4.66	12.5	%	
												UE MaxPower	PUSCH DMRS EVM	0	4.25	12.5	%	Τ
)19-07-31T15:59:14	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QAM16_10	InnerFull	UE lowPower	PUSCH EVM	0	1.99	12.5	%	Τ
												UE lowPower	PUSCH DMRS EVM	0	1.83	12.5	%	Т
)19-07-31T15:59:23	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QAM16_10	OuterFull	UE MaxPower	PUSCH EVM	0	3.27	12.5	%	
												UE MaxPower	PUSCH DMRS EVM	0	3.24	12.5	%	Т
)19-07-31T15:59:33	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QAM16_10	OuterFull	UE lowPower	PUSCH EVM	0	2.23	12.5	%	
												UE lowPower	PUSCH DMRS EVM	0	2.15	12.5	%	
)19-07-31T15:59:42	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QAM64_18	OuterFull	UE MaxPower	PUSCH EVM	0	2.55	17.5	%	T
												UE MaxPower	PUSCH DMRS EVM	0	2.51	17.5	%	
19-07-31T15:59:51	ENDC	6.4B.2.3.1 Error Vector Magnitude	N78	100MHz	SCS30K	636666	3549.99MHz	0	CP-OFDM	QAM64_18	OuterFull	UE lowPower	PUSCH EVM	0	2.19	8	%	T
												UE lowPower	PUSCH DMRS EVM	0	2.29	8	%	T

RF Automation Toolset

5G Device End-to-End Workflow

FUNCTIONAL KPI

Network

Emulator

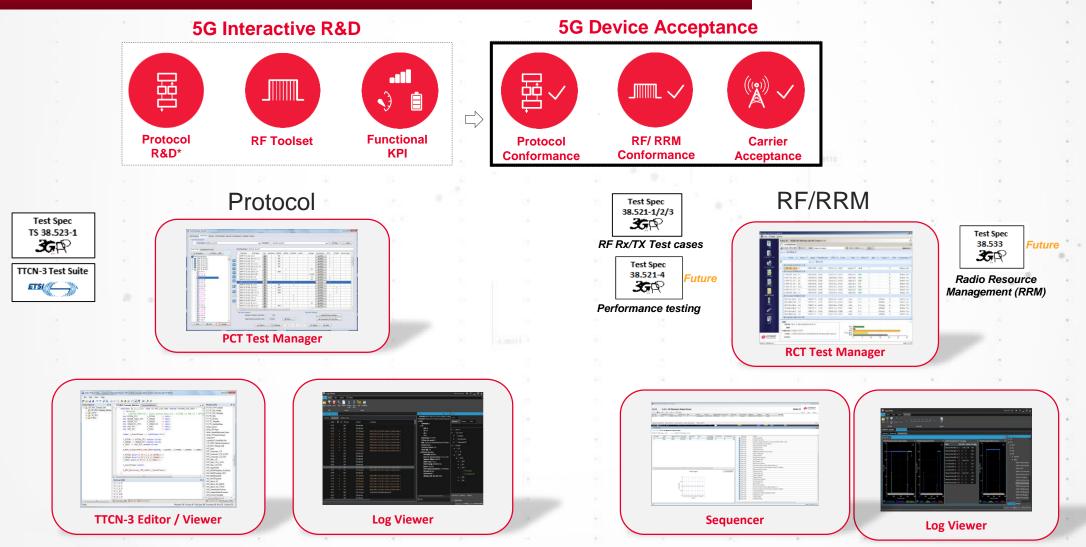
Channel

Emulator mmWave OTA Solutions

Support for sustained maximum E2E throughput, meet power consumption goals;

- Stress test the device at maximum E2E data throughput
- Benchmark battery life performance for different 5G use cases

KPI = Key Performance Indicators


Key Features:

- Easy to use GUI enables complex tests without the need to define protocol scripts
- Network configurations optimized to measure device performance
- ✓ Throughput, Battery life, Beam management
- Flexible automation, including use of external measurement equipment
- ✓ Simple Test case development
- ✓ Use results viewer for off line analysis

Sub-6 GHz and mmWave - Conducted and OTA

5G Device End-to-End Workflow

DEVICE ACCEPTANCE

KEYSIGHT

Keysight 5G NR Conformance Test Platform

TP168 INTRODUCED BY AUGUST 2018 IN GCF

3CF-VP	Page 2	Version 3.24.0
Software configuration details		
All major software components including	the component's name shall	be listed.
SW Component		Other
Keysight 5G Protocol Conformance Toolset		
Keysight 5G RF/RRM Conformance Toolset		
Test Case Batches		
Declaration of Test Platform Availabil The Test Vendor, Keysight Technologic Conformance Tookler with all the requir will be commercially available prior to th as described above can be delivered wi	s, hereby confirms that the ed HW and SW units and co	omponents are commercially available or ed test cases, and that the test platform

KEYSIGH1

TECHNOLOGIES

GCF-VP	Page 1	Version 3.24.0
Annex D: New Tes	t Platform Declaration Forr	
	F A	

Title:	New Test Platform declaration for presentation to the CAG
Test Platform Number:	The following TP number has been allocated from the DCC Database: TP 168.
GCF Work Item:	The Test Platform is initially intended to provide test capabilities for the following Work Items: WI 501, WI-502, WI-503, WI-504, WI-505.
Description:	Keysight Conformance Toolset for 5G Protocol, RF and RRM conformance testing.
Source:	Keysight Technologies
Date:	21 st August 2018
For presentation at:	CAG#56 / 23th - 24th October / Lexington, KY, USA

Test Platform Declaration

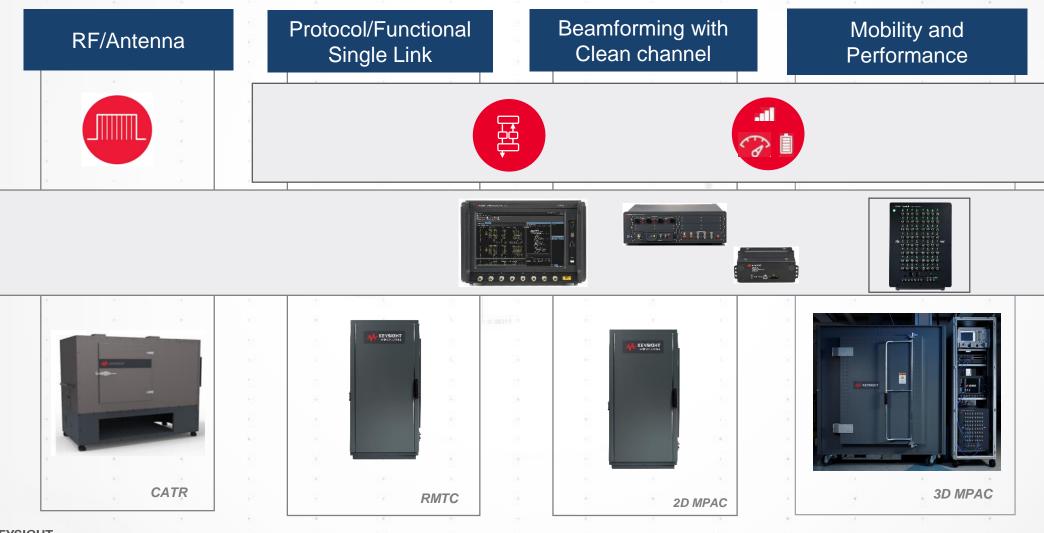
Test Platform(s) manufacturer, name: Keysight Technologies, Keysight Conformance Toolset

Test Platform(s) Details:

TP168 represents the Protocol and RF/RRM Conformance Toolset solutions from Keysight Technologies.

All main components of the test system (hardware and software) are manufactured and supported by Keysight Technologies. The major components of the Test System are detailed below.

Hardware configuration details


aldware comparate	HW Components Name	Other
Hardware Manufacturer		www.keysight.com/find/5G
keysight Technologies	UXM 5G Wireless Test Set	MIN SSTER.
Keysight Technologies	Common Interface IF Unit	
Keysight Technologies	mmWave Transceiver	
Keysight Technologies	OTA Chamber	
Keysight Technologies	Signal Analyzer	
Keysight Technologies	Signal Generator	
Keysight Technologies	Switching Unit	

www.globalcertificationforum.org Global Certification Forum (GCF) Ltd

What are your mm-Wave OTA testing needs?

5G DEVICE END-END SOLUTIONS

KEYSIGHT TECHNOLOGIES

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

5G NES Hardware Components

3 KEY BUILDING BLOCKS

UXM 5G Wireless Test Platform (E7515B)

- <6GHz Frequency range</p>
- Scalable bandwidth 8Tx/4Rx @800MHz, 4Tx/2Rx @1600MHz
- Integrated RFIO + Internal fading
- Support for RF, IF, Host and BBIQ interfaces (slow and full rate)

43

• Support for 10GbE connectivity

Common Interfacing Unit (E7770A)

- Same unit for both PROPSIM CE and UXM 5G
- Supports up to 8x heads, with scalability for more
- Flexibility to add new heads to support new bands
- Supports high IF connection (6-12 GHz)

mmWave Transceiver for 5G (RRH)

- Supports 28, 39 and 40GHz bands
- Compact, bi-directional

Questions and Resources

WHERE TO GO FOR HELP

www.keysight.com/find/5GNR

- Simulation
 - <u>www.keysight.com/find/Systemvue</u>
- Signal Generation:
- www.keysight.com/find/N7631C
- www.keysight.com/find/N5182B
- www.keysight.com/find/N9383A
- www.keysight.com/find/M8190A
- www.keysight.com/find/M8195A
- Signal Analysis:
- www.keysight.com/find/89601B
- www.keysight.com/find/N9085E
- www.keysight.com/find/N
- www.keysight.com/find/M9393A
- www.keysight.com/find/PXA
- www.keysight.com/find/UXA

- Channel Emulation:
 - <u>www.keysight.com/find/Propsim</u>
- DVT and Manufacturing;
- www.keysight.com/find/E6640A
- www.keysight.com/find/M9410A
- www.keysight.com/find/M9411A
- www.keysight.com/find/S9100A
- Contact your local Field Engineer for;
- gNB Emulator for UE Testing: (UXM 5G E7515B)
- Test chambers
- mmWave extenders (CIU and RRH)
- Field Testing;
 - www.keysight.com/find/Fieldfox
- www.keysight.com/find/NEMO

5G Boot Camp presentations available from: www.keysight.com/find/5GBootCampPresentations

