5G Boot Camp

Sr. Application Engineer/ Keysight EEsof EDA

Software Tools to Connect Design & Test Workflows

FOR 5G COMPONENTS AND SYSTEMS

Che-Shen Chen

2019.11.27

Sr. Application Engineer/ Keysight EEsof EDA

7 Key Measurement Challenges

Performance on the Network Network Emulation

Field Testing and Drive Test

Addressing 5G Physical Layer Design Challenges

Model-based design for:

- Exploring technologies and architectures
- Analyzing system performance for various use cases
- Uncovering potential issues early on

Addressing 5G Physical Layer Design Challenges

Integrated R&D workflow:

- Share design files across multiple disciplines
- Validate system-level performance by integrating baseband, RF, and antenna simulation
- Use same measurement science for both design and test

Customer Premises Equipment Small Cell Base Transceiver Station

ncreased

Modeling a Real World 5G Scenario

3GPP TS 38.901

- Polarization type: Dual
- Polarization modeling method: Model-2
- Polarization angle [0,90]
- XPRindB: cross polarization ratio

Antenna pattern files

- Complex vector components: Mag(Etheta, Ephi), Ang(Etheta, Ephi)
- PhaseCenter_Yes: antenna position information from pattern files
- ^{ms} PhaseCenter_No: antenna position information from
 - user definition

Scenario #1

- Number of stream (PDSCH_DMRS): 2
- # of mmWave module: 1

Scenario #2

- Number of stream (PDSCH_DMRS): 1
- Diversity combining: Maximal Ratio Combining
- # of mmWave module: 1

Scenario #3

- Number of stream (PDSCH_DMRS): 2
- Diversity combining: Switching (selective)
- # of mmWave module: 2

[BS TXRU and Antenna Model]

Dual-Polarized MIMO

[UE Antenna and Transceiver Model]

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Keysight EEsof EDA

COMMUNICATIONS, DEFENSE, AND POWER PRODUCT DESIGN TOOLS

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Modeling in the Design Workflow

Let's Begin with RF Architecture...

Defining "RF Architecture"

ALSO KNOWN AS "RF SYSTEM DESIGN"

- Need answers to the following questions about components in the system:
 - How many?
 - What types?
 - What specs?
 - What order?
 - Make or buy?
- The most important question: Will the overall design meet the customer's requirements?

RF block-level architecture design for an X-band upconverter

Ask the Audience...

QUESTIONS FOR ATTENDEES

- How many of you have designed, or will design, an **RF System**?
- Who has used spreadsheets for this work?
- Have you used any other tools?

fx

M36

=IF(L36=I36,J36,J36+(\$L\$5-\$K\$144)*K19)

CUSTOMER: DATE: *######## BANDWIDTH: 12.20

TEMP		GAIN	NF	ICP	C/I	PldB	Noise	G Flat	1 tot
deg C		dB	dB	dBm	dB	dBm	Pwr dBri	id₿ p•p.	mA
-40.0	С	52.00	2.36	20.84	13.68	12.15	-32.65	1.05	498.9
25.0	С	52.00	3.17	20.21	12.43	11.51	-31.84	1.05	460.0
85.0	С	52.00	3.96	19.60	11.20	10.92	-31.05	1.05	424.1

		GΔIN	N ⊑		<u>mèan</u>	HÉIRPE	BRNESS	i i i i i i i i i i i i i i i i i i i			C TH
CIRCUIT BLOCK	REF	dB	dB	dB	a de cano			mA	dB p-p	dB/GHz	dB/C
0641 LNA	A1	8.00	2.50	23.00	-0.010	-0.010	0.010	50.0	0.20	0.030	0.0000
0640 Gain block	A2	9.00	3.50	28.00	-0.010	-0.010	0.010	70.0	0.20	0.000	0.0000
Bandpass filter	A3	-3.00	3.50	60.00	0.000	0.000	0.000	0.0	0.03	0.000	0.0000
0640 Gain block		9.00	3.50	28.00	-0.010	-0.010	0.010	70.0	0.20	0.030	0.0000
0640 Gain block		9.00	3.50	28.00	-0.010	-0.010	0.010	70.0	0.20	0.030	0.0000
Temperature Compensati		-9.00	9.00	27.00	0.070	0.070	0.070	10.0	0.03	0.000	0.0000
0640 Gain block		9.00	3.50	28.00	-0.010	-0.010	0.010	70.0	0.00	0.000	0.0000
Mixer		-8.00	8.00	27.00	0.000	0.000	0.000	0.0	0.03	0.000	0.0000
IF amplifier		30.00	3.00	30.00	-0.010	-0.010	0.010	75.0	0.05	0.000	0.0000
IF filter		-4.00	4.00	60.00	0.000	0.000	0.000	0.0	0.01	0.000	0.0000
IF amplifier		10.00	3.00	30.00	-0.010	-0.010	0.010	45.0	0.05	0.000	0.0000
Demodulator		-8.00	8.00	28.00	0.000	0.000	0.000	0.0	0.00	0.000	0.0000

UXUK219		GAIN	-40.0 NF	C ***** ICP	GAIN	+25.0 NF	C ***** ICP	GAIN	85.0 NF	C ***** ICP
CIRCUIT BLOCK	REF	dB	dB	dBm	dB	dB	dBm	dB	dB	dBm
0641 LNA	A1	8.65	1.85	23.7	8.00	2.50	23.0	7.40	3.10	22.4
0640 Gain block	A2	9.65	2.85	28.7	9.00	3.50	28.0	8.40	4.10	27.4
Bandpass filter	A3	-3.00	3.50	60.0	-3.00	3.50	60.0	-3.00	3.50	60.0
0640 Gain block		9.65	2 85	28.7	9.00	3 50	28.0	8 4 0	4 1 0	27.4

Spreadsheets for RF System Analysis

ADVANTAGES AND DISADVANTAGES

Spreadsheet Advantages	Spreadsheet Disadvantages
Readily available	Poor integration with other tools
Simple data entry	Typically scalar calculations
Inexpensive	No frequency response
	No mismatch loss
	No compression effects
	Ignore model operating point
	No intermod generation
	No spurious analysis
	No spectral density or bandwidth
	Limited to two ports
	Single path analysis
	No leakage paths
	No reverse paths
	No broadband noise analysis
	Amplifier noise figure ignores source impedance
	No mixer image noise
	Limited phase noise
	Each engineer has their own version
	Difficult to hand off and maintain
	Difficult to make as company standard

RF System Design Tip 1: Make Fewer Assumptions

ONE EXAMPLE: CASCADED NOISE FIGURE

• Traditional spreadsheet calculation for cascaded noise figure uses the Friis equation:

$$F_{cascade} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \frac{F_4 - 1}{G_1 G_2 G_3} + \dots + \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

- There are severe disadvantages to this method:
 - Assumes perfectly matched stages
 - Assumes frequency & bandwidth independence
 - Assumes noise contributions are from a single path
 - Assumes zero mixer image noise
 - Assumes zero contribution from phase noise

Everyone has probably heard a famous saying about what happens when you assume...

RF System Design Tip 2: Use Better Component Models

EXAMPLES OF RF COMPONENT MODELS

- When it comes to models...
 - Many can be potentially useful
 - **Some** are better than others
 - None are perfect
- There are many options for modeling RF components:
 - S-parameters
 - S2D, P2D
 - X-parameters
 - Circuit models (SPICE, transmission lines, etc.)
 - Other behavioral models (Volterra, intermod tables, built-in, etc.)
 - Language-based models (Verilog-A, etc.)
 - Others that I'm leaving out?

Sys-parameters

RF \ LO	0	1	2	3	4	5
0	Х	0	29	23	42	25
1	20	0	29	12	34	25
2	52	40	58	40	58	41
3	46	55	50	49	53	49
4	73	73	65	62	66	59
5	77	76	84	63	64	60

Mixer model based on intermod table

What Are Keysight Sys-Parameters?

A NEW WAY TO USE VENDOR PART DATA IN SIMULATION

- Vendor datasheets will typically include metrics such as Gain, NF, P1dB, IP3, etc.
- These performance metrics will typically be specified vs.
 frequency, temperature, and bias
- Keysight Sys-parameters provide a standard file format and model
- Sys-parameters are a simulate-able datasheet

How to Get a Sys-Parameters Model

CREATE THE MODEL YOURSELF OR OBTAIN DIRECTLY FROM VENDORS

- You can easily create a Sys-parameter model yourself. Enter the part's datasheet performance either:
 - Directly in Keysight Spectrasys models for amps, mixers, etc. (easy-to-use UI)
 - Or into an Excel or CSV file (follow the documented format)
- Some component vendors also supply Sys-parameters

KEYSIGHT TECHNOLOGIES

microwave

5G mmWave Transmitter Design

RF ARCHITECTURE SIMULATION IN SYSTEMVUE

Types of models used in system-level simulation:

- Behavioral models (built-in)
- Sys-parameters
 - S-parameters
 - X-parameters

Image: Keysight, mmWave transceiver module

In-phase

÷

X Microwave - A Keysight Partner

OFF-THE-SHELF PARTS WITH READY-MADE CONNECTIONS

Design

Online system simulation, including cascade analysis and layout. Uses various models and the Spectrasys simulator.

KEYSIGHT

Prototype

Prototyping plate with solderless interconnects, walls and lids, and bias and control.

RF and MICROWAVE SOLUTIONS to 50 GH

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Production

Modular designs can be rapidly integrated into a single PCB, with standard or custom housings.

Example Design – 5G mmWave Receiver

ARCHITECTURE SIMULATION USING KEYSIGHT SPECTRASYS

5G Receiver Prototype

BUILT USING COTS PARTS AND X MICROWAVE PROTOTYPING PLATE

Off-the-Shelf Parts:

Analog Devices Inc
Avago
Marki Microwave
Mini-Circuits
Qorvo

What Is EVM?

ERROR VECTOR MAGNITUDE

- Commonly used metric for a Tx or Rx, also sometimes called relative constellation error (RCE)
- Noise, distortion, spurious signals, and phase noise all degrade EVM
- It is the average amplitude of the error vector, normalized to the peak vector magnitude

What is EVM?

ERROR VECTOR MAGNITUDE

- Unlike QPSK, 16QAM has constellation points with varying amplitudes
- Therefore, we have a choice on whether to normalize the error vector to the peak amplitudes or the RMS amplitudes

EVM Results for the 5G Receiver Prototype

SUMMARY OF MEASURED VS SIMULATED AT VARIOUS INPUT POWER LEVELS

Input power (dBm)	Measured EVM (% RMS)	Estimated EVM (% RMS)
-50	1.8	2.2
-60	3.1	3.5
-70	9.3	9.3
-75	17.9	16.3
-78	20.0	22.9

EVM Results for the 5G Receiver Prototype

MEASURED VS SIMULATED WITH 16QAM AT INPUT POWER -50 DBM

EVM Results for the 5G Receiver Prototype

MEASURED VS SIMULATED WITH 16QAM AT INPUT POWER -75 DBM

KEYSIGHT TECHNOLOGIES

BER Estimation for the 5G Receiver Prototype

SIMULATED RESULTS

Phased Array RF Models

YE OLDE SCHEMATIC REPRESENTING MANY RF CHANNELS

KEYSIGHT

Phased Array RF Models

MODERN SCHEMATIC REPRESENTING MANY RF CHANNELS

A mmWave 5G Beamformer Model

Phased-Array Modeling

INCREASING THE ACCURACY OF SYSTEM-LEVEL PHASED ARRAY

Use mix of built-in behavioral blocks, S-, X-, and Sys-parameters

Extracted data from electromagnetic simulation:

- 1. Element/array far-field pattern
- 2. S-parameters include coupling effects (can analyze actively changing input impedances)

Antenna Array Design

DUAL POLARIZATION, MIMO, AND BEAMFORMING

1. Layers substrate and feed lines design

4. Characterize the array in a phone housing

3. Array design

(EYSIGH⁻

5. Generate far-field pattern and coupling matrix in S-parameter format

Designed by Heesoo Lee, Keysight Technologies.

Next Topic is Baseband...

Standard Waveform Creation and Analysis

- 5G waveforms can be incredibly complex
- SystemVue makes it easy to create standard-compliant 5G waveforms:
 - Scalable numerology
 - Flexible frame structure
 - Support for various applications (eMBB, URLLC, mMTC, etc.)
- Having a golden waveform and reference measurement engine is critical for 5G design and test

• 3GPP TS 38.211 - Physical Channels and Modulation htsosp/pvvvgv.tse.veight.vonnibleking/and Oupland/Albding Understanding_the_5G_NR_Physical_Layer.pdf

Time / Frequency Grid -1.347

5G Uplink Resource Grid

(dB10)

10.9

-20.45

Model-Based Design and Verification for DSP

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

SystemVue 5G NR Downlink Source

SystemVue 5G NR Reference Receiver Block

SystemVue 5G NR EVM Measurement Block

N1 {NR_DL_EVM@5G Advanced Modem Models}

Link-Level Performance

- Throughput (data transfer speed) is a key metric for 5G (tops out at around 10 Gbps)
- Using SystemVue's reference IP and high fidelity behavioral RF modeling, it is possible to simulate throughput early in the design phase
- SystemVue uses the same measurement method as described in the 3GPP standard

5G Downlink Throughput Graph

Rx Diversity Beam Switching Scenario

Reference: <u>http://literature.cdn.keysight.com/litweb/pdf/5992-2519EN.pdf</u>

Combining Simulation and Test

CREATE & COMBINE WAVEFORMS & NOISE, VIRTUALIZE MISSING HARDWARE

WAVEFORMS

VIRTUAL SYSTEMS

Multi-Radio Co-Existence

- Non-Standalone (NSA) mode: LTE and NR radio co-exist
- Simultaneous LTE + NR transmission = serious IMD issues
- Hundreds of 5G band configurations can be analyzed in SystemVue to determine IMD and NF
- Then, NF data for the receiver can be used for link-level simulation

EN-DC Front End Module Design

http://literature.cdn.keysight.com/litweb/pdf/5992-3032EN.pdf

IMD Product Affect Receiver Sensitivity

Difficult System-Level Engineering

- Digital predistortion (DPD), envelope tracking (ET), and crest factor reduction (CFR) may be needed to enhance power efficiency
- Accurate PA characterization is key. Keysight's level-3 FCE model can include memory effects
- Generating standard 5G waveform and error vector measurement is the key requirement for system-level simulation. System engineers also need to integrate their own linearization signal processing algorithm into the simulation software
- Possible solutions include SystemVue, 5G Library, DPD Library, ADS, and GoldenGate

Digital Pre-Distortion

PA Model Extraction (Memory and Non-Linear Effect)

Over-the-Air (OTA) Simulation

- Why radiative test (OTA)?
 - In FR2, not enough space to make cable connections to all antenna elements
 - K and V connectors are expensive
 - How do you measure beam direction in conductive test? It's not the right approach! Need OTA!
- Are you going to do all this without a simulation-based study?

- 3GPP TS 38.141 NR; base station (BS) conformance testing
- 3GPP TS 38.521 NR; user equipment (UE) conformance specification

SystemVue 5G OTA Test Bench

http://literature.cdn.keysight.com/litweb/pdf/5992-2600EN.pdf

KEYSIGHT TECHNOLOGIES