5G Boot Camp

Brian Su / Sr. Project Manager

1.00411

7 Key Measurement Challenges

Lots of Channels MIMO/Beamforming

Connect Design & Test *Components, Systems*

Life Beyond Connectors Over-the-Air

Channel Characterizing & Emulating

Performance on the Network Network Emulation

Field Testing and Drive Test

Challenge: Signal Quality and mmWave

15 kHz

CHALLENGES WITH MMWAVE AND BANDWIDTH

- IQ modulator errors
- Phase noise
 - OFDM close subcarrier spacing
- Distortion
 - Overdriving causes compression and distortion
- Signal-to-noise ratio
 - Wide BW systems with high noise figure coupled with low RF power levels
- Amplitude flatness and phase linearity
 - Frequency response of cables, gain horn, amplifiers, filters, signal generator, signal analyzer, etc.

How Do You Know If the Signal Is Good?

EVM IS THE STANDARD MEASURE OF SIGNAL QUALITY

EVM (Error Vector Magnitude): The normalized ratio of the difference between two vectors: IQ measured signal & IQ reference (IQ reference is calculated value)

What's considered Good?

- For the link to work: "At the limit for the scenario"
- For component test: "10 dB better than the system as a whole"
- For system test: "3 dB better than the source from radio standard" 5G NR Release 15 EVM Requirements

Mod	Required EVM		
Pi/2 BPSK	30% (-5.2 dB)		
QPSK	17.5 % (-15.1 dB)		
16QAM	12.5 % (-18.1 dB)		
64QAM	8 % (-21.9 dB)		
256QAM	3.5 % (-29.1 dB)		

Signal Quality at mmWave Frequencies

CHALLENGES AND TIPS

- IQ modulator errors
- Phase noise
 - OFDM close subcarrier spacing
- Distortion
 - Overdriving causes compression and distortion
- Signal-to-noise ratio
 - Wide BW systems with high noise figure coupled with low RF power levels
- Amplitude flatness and phase linearity
 - Frequency response of cables, gain horn, amplifiers, filters, signal generator, signal analyzer, etc.

Tips for mmWave Measurements

- Minimize signal generation impairments correcting for IQ modulation, phase noise, flatness, and linearity errors
- ✓ Ensure adequate antenna gain
- Select test equipment with EVM and Signal-to-noise ratio better than your DUT
- Ensure proper use of cables and connectors for the given frequency
- Perform system-level calibration to ensure measurement is at DUT plane

Case Study: Testing for Coexistence

Challenge: Dual-mode operation. Verify performance in- and out-of-band to reduce interference

- How will the waveforms interact?
- How much out-of-band suppressions will be required?
- How much guard band will be required?
- How can different scenarios be explored?

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Case Study: 8CC Signal Generation and Analysis

Signal analysis

- 0 ×

Challenge: EVM Optimization @ mmWave

OPTIMIZE EVM USING X-APPS AND VSA

Amplifier EVM performance:

• 5G NR DL 1CC/8CC, 64/256 QAM (high crest factor), 100 MHz bandwidth, 28 GHz & 39 GHz (FR2)

Generate 5G NR waveform and playback on wideband vector source

N7631C Signal Studio

Export VSA setup file from Signal Studio or use Signal Studio .SCP file to configure 5G NR EVM measurement in VSA/X-Apps

 3 X-Apps or VSA:
 Optimize and measure EVM before and after AUT
 Wideband Source
 Wideband Analyzer
 Wideband Analyzer
 Mossion Analyzer

89601BHNC VSA 5G NR

N9085EM0E X-Series measurement application

M9383B/M9384B VXG PXI VECTOR SOURCE

VXG PXI vector signal generators are optimized by default. Simply do the following:

- Set frequency
- Set amplitude
- Set ALC:

KEYSIGH

- Freq < 20 GHz: Turn off
- Freq > 20 GHz: Set to very slow
- Select waveform
- Turn ARB & RF on

M9383B VXG-m and M9384B are optimized right out of the box!

Note: you can also use the waveform markers to trigger the PXA or UXA, which greatly speeds up the demodulation measurements.

N9040B X-SERIES ANALYZER

Several things you can do to optimize EVM:

- Select *frequency span* that closely captures signal bandwidth
- Optimum phase noise method for wide bandwidth signals: *Best Wide Offset*
- Optimize front end path: if available, use *Full Bypass Mode* (particularly at higher frequencies around 28 and 39 GHz) – <u>for EVM only</u>
- Optimize attenuator: find best level at signal analyzer *mixer input* for optimum EVM (same for ACLR)
- Optimize attenuator & IF gain: use "Optimize EVM" auto range in the 5G NR application to get the best combination of both

89601C VSA

For wide bandwidth signals, optimize EVM performance by:

- Setting phase noise optimization method to *Best Wide Offset;*
 - Input → Extensions →
 Phase Noise Optimization
- Optimizing IF gain and attenuation values using the Auto-range criteria for EVM optimization
 - Input → Analog → Autorange All Criteria

OPTIMIZE FRONT END PATH

KEYSIGHT TECHNOLOGIES YTF loss at 40 GHz is ~10 dB.

UXA FRONT END - SIMPLIFIED VIEW

- Normally, wide BW measurements are noise limited, hence, bypassing both pre-selector & path for electronic attenuator/preamp (Low Noise Path) can improve EVM
- Normally, analyzer selects IF gain depending on other analyzer settings, including the selected RF attenuation. For a given signal BW and crest factor, adjusting both the RF attenuator and IF gain improves EVM.
 - 5G NR application has "Optimize EVM" feature that adjusts preamp, IF gain, and attenuation based on measured peak power to improve EVM.

EVM Optimizing Auto Range

- "Optimize EVM" auto range is available to optimize hardware settings for best EVM performance
- Optimized EVM result is achieved by:
 - Adjusting preamp (on or off), IF gain, and attenuation based on measured peak power
 - Mech attenuation could be set below 6 dB after Optimize EVM is pressed, to get better noise floor

S) Range - 5 dBm Trig: Free Run Carrier Ref Freq: 1.00000000 GHz CC Info: Downlink, 1 CC, SISO Component Carrier CC0 2 CC0 Frame Summary Image: Stable Stabl							Meas Set	up Y 🗔
CC0 CC0 2 CC0 Frame Summary EVM Power per RE Num RB PSS (SS Block 1) 0.00 % -35.75 dBm 44 SSS (SS Block 1) 0.00 % -35.75 dBm 44 PBCH (MRS (SS Block 1) 0.00 % -35.75 dBm 44 PBCH (MRS (SS Block 1) 0.00 % -35.75 dBm 80 PDSCH (WP1) 0.03 % -35.75 dBm 5450 PDSCH (WP1) 0.03 % -35.75 dBm 272 PDSCH (WP1)	S)	Range: -5 dBm	Trig: Fre	ee Run	Carrier Ref Fre CC Info: Down	q: 1.000000000 GHz link, 1 CC, SISO	Component Carrier	
2 CC0 Firme Summary EVM Power per RE Num.RB SSS (SS Block 1) 0.00 % -35.75 dBm 44 Averaging Radio PSS (SS Block 1) 0.00 % -35.75 dBm 44 PBCH (SS Block 1) 0.00 % -35.75 dBm 80 PBCH (MSS (SS Block 1) 0.00 % -35.75 dBm 60 Preset To Standard Off Preset To Standard Standard Componet Componet <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>CC0</th><th></th></t<>							CC0	
Image: State	2 CC0 Fra	ame Summary 🔻					Avg Hold Number	Settings
PSS (SS Block 1) 0.00 % -35.75 dBm 44 SS (SS Block 1) 0.00 % -35.75 dBm 44 PBCH (SS Block 1) 0.00 % -35.75 dBm 80 PBCH (SS Block 1) 0.00 % -35.75 dBm 80 PDSCH (WP1) 0.03 % -35.75 dBm 80 PDSCH (WP1) 0.03 % -35.75 dBm 80 PDSCH PTRS (8WP1)			FVM	Power per	RF Num RB		10	
SSS (SS Block 1) 0.00 % -35.75 dBm 44 PBCH (SS Block 1) 0.00 % -35.75 dBm 80 PDSCH (SS Block 1) 0.00 % -35.75 dBm 80 PDSCH (SS Block 1) 0.00 % -35.75 dBm 80 PDSCH (SS Block 1) 0.03 % -35.75 dBm 5460 PDSCH (SWP1) 0.03 % -35.75 dBm 5460 PDSCH (SWP1) 0.03 % -35.75 dBm 5460 PDSCH (SWP1)	PSS (SS	S Block 1)	0.00 %	-35.75 dBr	n 44		Augraging	- Radio
PBCH (SS Block 1) 0.00 % -35.75 dBm 80 PBCH (SS Block 1) 0.00 % -35.75 dBm 80 PBCH (WP1) 0.03 % -35.75 dBm 540 PDSCH (WP1) 0.03 % -35.75 dBm 5418 PDSCH (WP1) 0.03 % -35.75 dBm 5418 PDSCH (WP1)			0.00 %	-35.75 dBr	n 44		Averaging	Ttadio
PBCH DMRS (SS Block 1) 0.00 % -35.75 dBm 80 PDSCH (WWP1) 0.03 % -35.75 dBm 5460 PDSCH PTRS (8WP1)	PBCH (SS Block 1)	0.00 %	-35.75 dBr	n 80		On	D (T
PDSCH (BWP1) 0.03 % -35.75 dBm 5460 PDSCH DMKS (BWP1) 0.03 % -35.75 dBm 5418 PDSCH PKS (BWP1)	PBCH D	MRS (SS Block 1)	0.00 %	-35.75 dBr	n 80			Preset Io
PDSCH DMRS (BWP1) 0.03 % -35.75 dBm 5418 PDSCH PTRS (BWP1) - - - PDCCH (BWP1) - - - GSI-RS (BWP1) 0.03 % -35.75 dBm 272 BWP1 0.60 dBm - - SB1 - - - - SB1 - - - - - SB1 - - - - - SB1 - - <td< td=""><td>PDSCH</td><td>(BWP1)</td><td>0.03 %</td><td>-35.75 dBr</td><td>n 5460</td><td></td><td>Average Mode</td><td>Standard</td></td<>	PDSCH	(BWP1)	0.03 %	-35.75 dBr	n 5460		Average Mode	Standard
PDSCH PTRS (BWP1) Componential Componential Componential Componential Componential Componential Componential Componential Componential Meas Times PDCCH DMKP(BWP1) Componential Meas Times Meas Times Meas Times Meas Times Meas Times Copy CC0 To Channel Profile Advanced Decode 3 CC0 BWP Summary • Optimize EVM Auto Couple Decode Decode Decode Meas Preset Decode Meas Preset Meas Preset Decode Meas Preset M			0.03 %	-35.75 dBr	n 5418			Componer
PDCCH (BWP1) PDCCH (BWP1) Meas Time PDCCH DMRS (BWP1) Meas Time CSU RS (BWP1) Meas Time Copy CC0 To Aluar Couple Optimize EVM Advanced Decode 3 CC0 BWP Summary	PDSCH	PTRS (BWP1)					Exponential	Carriers
PDCCH DMRS (BWP1)	PDCCH	(BWP1)						Camero
CSI-RS (BWP1) 0.03 % -35.75 dBm 272 Sequential Weas Intra- Copy CCO To All Channel Profile 3 CC0 BWP Summary • Power Optimize EVM Advanced 0 STP RSRQ RSSI • Meas Preset Decode BWP1 -0 60 dBm -35.75 dBm -20.496 dB -12.49 dBm "Optimize EVM" Meas Preset							Acquisition Mode	Moor Time
3 CC0 BWP Summary Power OSTP RSP RSQ RSSI35.75 dBm -20.496 dB -12.49 dBm			0.03 %	-35.75 dBr	n 272		Sequential	v weas nine
3 CC0 BWP Summary Power OSTP RSRP RSRQ RSSI BWP1 -0.60 dBm -35.75 dBm -20.496 dB -12.49 dBm "Optimize EVM" Meas Preset Meas Preset							Сору СС0 То	Channel
Advanced Optimize EVM Advanced Decode BWP1 -0.60 dBm -35.75 dBm -21.594 dB -0.60 dBm SB135.75 dBm -20.496 dB -12.49 dBm								
Auto Coupie Decode Power SSB1 SSB1 OSTP SSB1 SSB1 OSTP SSB1 OSTP SSB1 OSTP SSB1 OSTP SSB1 OSTP SSB1 OSTP SSB1 OSTP SSB1 SSB1 OSTP SSB1 S							Optimize EVM	Advanced
BWP1 -0 60 dBm -35.75 dBm -21.594 dB -0.60 dBm -45.75 dBm -20.496 dB -12.49 dBm	3 CCO BV	VP Summary V					Auto Couple	Decode
OSTP RSRP RSRQ RSSI BWP1 -0.60 dBm -35.75 dBm -21.584 dB -0.60 dBm SSB1 -35.75 dBm -20.496 dB -12.49 dBm			Pov	ver				
BWP1 -0.60 dBm -35.75 dBm -21.584 dB -0.60 dBm SSB135.75 dBm -20.496 dB -12.49 dBm "Optimize EVM"		OSTP	RSRP	RSRQ	RSSI		Meas Preset	
SSB135.75 dBm -20.496 dB -12.49 dBm	BWP1	-0.60 dBm -3	35.75 dBm	-21.584 dB	0.60 dBm	"Optimize EVM"	medstrieset	
	SSB1	3	35.75 dBm	-20.496 dB -	12.49 dBm	000000000000000000000000000000000000000		

Note: "Optimize EVM" in X-Apps uses peak power to adjust hardware settings and 89600 VSA uses actual measurement results to optimize EVM

5G NR 28 GHZ 100 MHz 256QAM OPTIMIZED EVM RESULT

"Optimize EVM"

5G NR 39 GHZ 100 MHz 256QAM OPTIMIZED EVM RESULT

"Optimize EVM"

ACLR Optimization

UXA KEY STEPS

- Do not use Full Bypass Path mode the microwave preselector filter is needed for best ACLR performance.
- Above 3.6 GHz enable Low Noise Path (LNP). This bypasses lossy switches.
- Optimize attenuator for best performance
- Turn on Noise Corrections

+

Corrections: Of Freq Ref: Int (S

KEYSIGHT Input: RF

Align: Auto

Ö.

Carrier Ref Freq: 28.000 CC Info: Downlink, 1 CC

Trig: Free F Gate: Off Meas Setun

5G Hardware Configurations: FR1 and FR2

NON-SIGNALING: WIDE BANDWIDTH SIGNAL GENERATION & ANALYSIS

M9383B & M9384B VXG

PXI Source

M9383B and N9384B VXG PXI vector source, up to 44GHz

~1% EVM at 28 GHz w/2 GHz BW

Fully calibrated from factory across all BW's General purpose instruments (not banded)

Benchtop Analyzer

N9040/41B UXA analyzer, up to 50 / 90 / 110 GHz ~1% EVM at 28 GHz w/1 GHz BW (option H1G)

N9040B & N9041B

Example: Multi-Channel 5G Testbed for FR1 and FR2

Precede the 5G Race with New Radio

KEYSIGHT 5G NR SOFTWARE SOLUTIONS

Software:	SystemVue	Signal Studio	89600 VSA	X-Series Apps	
Category:	ESL Design & Simulation software	Signal Creation software	Vector Signal Analysis software	Measurement Application software	
Custom OFDM: for 5G proto-typing	W1461B	N7608APPC	89601B-BHF	N9054EM1E	
Pre-5G: for Verizon	W1906E	N7630APPC	89601B-BHN		
3GPP 5G NR:	W1906E	N7631APPC (N7631C)	89601B-BHN	N9085EM0E	
Target Customers:	Simulation users who needs the world-best 5G NR PHY simulation	R&D who needs test vector waveforms on receiver or component tests	R&D who wants to get in- depth modulation analysis for transmitter tests	R&D plus early MFG for simple pass/fail tests	

7 Key Measurement Challenges

Performance on the Network Network Emulation

Field Testing and Drive Test

Challenge: Multiple Antennas

Challenge: Understanding MIMO and Beamforming real-world performance including handover and throughput

- Characterized beam patterns have proper phase and magnitude relationship and beams and nulls are in the correct position
- Emulate real-world conditions in sub-6 GHz or mmWave

Example: Multi-Channel 5G Test Bed for NR FR1 and FR2

Test Signal 2x2 MIMO at 28 GHz

Key Features

- 44 GHz Signal Creation / 110 GHz Analysis
- Multi-channel
- High output power
- 2 GHz signal creation BW
- 110 GHz BW demodulation analysis
- Swept-tuned measurements to 110 GHz
- Import S-Parameters to de-embed test fixture

Device Under Test

Cross-polarized 28-GHz phased array

UXA

110 GHz Signal Analyzer

DC Power Analyzer

 110 GHz Oscilloscope
 1

 5G Boot Camp: 7 Key Measurement Challenges and Case Studies

UXR

Case Study: Verify Antenna Performance

Challenge: Base station vendor wanted < 1 % EVM on a wideband signal

- Is the waveform created with 5G compliant waveform with numerology, UL, DL scheduling?
- Can the equipment produce clean mmWave signals?
- Performance mmWave measurements?

Solution: Flexible Test Bed

- 5G NR compliant waveform generation; N7631C & VXG Source
- Best-in-class EVM performance; VXG source & UXR 110 GHz oscilloscope with 89601C (VSA)
- Flexible configurations can scale as the standards evolve

Device Under Test

Verify Antenna Performance

3GPP 5G NR MEASUREMENT DETAIL WITH VSA

5G NR Downlink 100 MHz BW @ 28 GHz 256 QAM payload

5G Conformance Test SW

KEYSIGHT

TECHNOLOGIES

TEST AUTOMATION WITH PATHWAVE TEST

PathWave Test SW user interface showing results from phased array DUT

Conformance test measurements can be sequenced over frequency/amplitude to build specific test plans for a given base station class and configuration.

- Create & playback 5G test
 waveforms
- AUT control
 - Mode; Tx or Rx
 - Beam Steering or Boresight
- Positioning
 - Azimuth
 - Elevation
- Measurements;
 - Power / EVM
 - Antenna beam pattern (at boresight)
 - Antenna beam power surface over azimuth and elevation
 - And more

Verify Antenna Performance

ECHNOLOGIES

3GPP 5G NR MEASUREMENT DETAIL (EXAMPLES)

5G NR Downlink 100 MHz BW @ 28 GHz 64/256 QAM payload

5G Boot Camp: 7 Key Measurement Challenges and Case Studies