5G Boot Camp

UNDERSTANDING 5G NEW RADIO RELEASE 15/16 STANDARDS

Keysight TechnologiesNOV 2019JianHua Wu

1.02411

KEYSIGHT TECHNOLOGIES

Understanding 5G NR Standards 5G AGENDA Technology Overview & Timeline

5G Scenarios and Use Cases

BROAD RANGE OF NEW SERVICES AND PARADIGMS

Amazingly Fast Great Service in Crowd		a Best Experience Ubio Follows You Co		Ubiqu Com	itous Things municating	Real-time & Reliable Communications
eMBB Mobile Broadband Access		Mao	mMTC Massive chine Communica	tion	Missi Machine C	URLLC ion-Critical Communication
All data, all the time			30 billion 'things' connect	ted	 Ultra-high 	reliability

 2 billion people on social media

KEYSIGHT

- Low cost, low energy

• Ultra-low latency

3

5G Specifications

ALIGNED WITH IMT VISION

- IMT 2020 are still defining specs
- IMT: International Mobile Telecommunications Initiative (by ITU)

Phase 1 – mid 2018

(EYSIGH1

- Focus on eMBB and low latency aspects
- Minimized changes to core architecture (LTE-EPC) – NSA operation initially
- 5G RAT focus on "conventional" frequency channels

Phase 2 – mid 2020

- Focus on new verticals (IIoT, V2X, etc.)
- Novel layers and architecture to allow full 5G potential (vehicular and multicast services)
- "mmWave" 28, 37, 39 GHz channels and unlicensed spectrum

5G Timing: Drivers

KEY MILESTONES AND CARDINAL DATES

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) \rightarrow Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave

3GPP TS 38.521-2 Table 5.3.5-1

FR2: NR band / SCS / UE Channel bandwidth									
NR	SCS 50		100	200	400				
Band	kHz	MHz	MHz	MHz	MHz				
n257	60	Yes	Yes	Yes	N/A				
11237	120	Yes	Yes	Yes	Yes				
n)E0	60	Yes	Yes	Yes	N/A				
11200	120	Yes	Yes	Yes	Yes				
260	60	Yes	Yes	Yes	N/A				
11200	120	Yes	Yes	Yes	Yes				
n261	60	Yes	Yes	Yes	N/A				
n261	120	Yes	Yes	Yes	Yes				

3GPP 5G Channel Bandwidth Requirements

- For FR1, 100 MHz is the maximum channel bandwidth specified
- For FR2, 50, 100, 200 and 400 MHz channel bandwidths are specified

3GPP TS 38.521-2 Table 5.3.5-1

	NR Band / SCS / UE Channel Bandwidth									
NR	SCS									
Band	kHz									
n257	60	Yes	Yes	Yes	N/A					
1237	120	Yes	Yes	Yes	Yes					
p250	60	Yes	Yes	Yes	N/A					
06211	120	Yes	Yes	Yes	Yes					
n260	60	Yes	Yes	Yes	N/A					
11200	120	Yes	Yes	Yes	Yes					
n261	60	Yes	Yes	Yes	N/A					
11201	120	Yes	Yes	Yes	Yes					

3GPP TS 38.521-1 Table 6.1-1

Channel Bandwidth
5 MHz
10 MHz
15 MHz
20 MHz
25 MHz
30 MHz
40 MHz
50 MHz
60 MHz
80 MHz
100 MHz

Sub-6 GHz & mmWave 5G Frequency Allocations (eMBB)

AVAILABILITY OF GREENFIELD TDD SPECTRUM

		5G Spectru	um Availabi	lity < 6GHz	:				
Deview		New	Exis	sting	BW	Total BW			
Region	F _{LOW}	F _{HIGH}	F _{LOW}	F _{HIGH}	MHz	MHz			
Korea	3400	3700			300	300			
F			2570	2620	50	450			
Europe	3400	3800			400	450			
			2496	2690	194				
Japan	3600	4200	3400	3600	800	1494	1494		1494
	4400	4900			500				
			2496	2690	191				
05	3550	3700 (1)			150	344			
			2300	2400	100				
Ohima			2555	2655	100	700			
China	3300	3600	3400	3600	300	700			
	4800	5000			200	1			
n-licensed			5725	5875	150	150			

	5G Spectrum Availability mmWave									
ĺ	Decion	Ne	W	Exis	sting	BW	Total BW			
	Region	F _{LOW}	F _{HIGH}	F _{LOW}	F _{HIGH}	GHz	GHz			
	Korea	26.5	29.5			3.00	3.00			
		24.25	27.5			3.25				
	Europe	31.8	33.40			1.6	7.85			
		40.5	43.5			3.00				
	Japan	27.50	29.50			2.0	2.0			
		27.50	28.35			0.85				
	US	37.00	38.60			1.6	3.85			
		38.6	40.00			1.4				
ſ	China	24.75	27.5			2.75	9.05			
	China	37.00	42.5			5.5	0.20			

n licenced	43.5	47			3.5	3.5 (China)
II-IICEIISEU	64.0	71.0	57.0	64.0	7.0	14.0

Adapted from IWPC 5G UE, SWKS Mar 2017 (David Pehlke)

* T-Mobile plans to use 600MHz spectrum which is an FDD band

Understanding 5G NR Standards 5G AGENDA Technology Overview & Timeline Numerology & Frame Structure

Waveform, Multiple Access & Coding

Waveform:

- Downlink: CP-OFDM
- Uplink: CP-OFDM + DFT-s-OFDM (Discrete Fourier Transform spread OFDM)
 - CP-OFDM targeted at high throughput scenarios
 - DFT-s-OFDM targeted at power limited scenarios

Waveform

WAVEFORM, NUMEROLOGY AND FRAME STRUCTURE

DL Waveform : CP-OFDM

- intended for MIMO (multiple layer, high data rates)
- Modulations : QPSK, 16QAM , 64QAM , and 256 QAM

Ref :<u>5G Waveform & Multiple</u> Access Techniques - Qualcomm

Waveform

WAVEFORM, NUMEROLOGY AND FRAME STRUCTURE

- UL Waveform
 - Option 1 : CP-OFDM: intended for MIMO (multiple layer, high data rates)
 - Modulation: QPSK, 16, 64, and 256 QAM
 - Option 2: DFT-s-OFDM: only for single layer transmissions (link budget limited cases)
 - Modulation : π/2-BPSK, 16, 64 and 256 QAM

PUSCH Processing Chain

Waveform, Multiple Access & Coding

Waveform:

- Downlink: CP-OFDM
- Uplink: CP-OFDM + DFT-s-OFDM (Discrete Fourier Transform spread OFDM)
 - CP-OFDM targeted at high throughput scenarios
 - DFT-s-OFDM targeted at power limited scenarios

Multiple Access:

- Orthogonal Multiple Access (OFDMA) (R-15)
- NOMA defined in R16

NOMA

NR RELEASE 16 OVERVIEW

Orthogonal Multiple Access

- Resource assignment is orthogonal between users
- CDMA
 - All power assigned to users
 - Each user is assigned different codes

• OFDMA

- All power assigned to users
- Each user is assigned different frequency resources

NOMA

NR RELEASE 16 OVERVIEW

Non-Orthogonal Multiple Access

- Resource assignment is not orthogonal between users
- Users transmit on the same time and frequency resources
- Power is shared between users
- Superposition and power allocation
- NOMA is mainly used in UL
- The most significant gain of NOMA over MU-MIMO can be achieved in the following scenarios:
 - Contention-based, grant-free transmission
 - Small data transmission from RRC_INACTIVE state

KEYSIGHT TECHNOLOGIES

Waveform, Multiple Access & Coding

Waveform:

- Downlink: CP-OFDM
- Uplink: CP-OFDM + DFT-s-OFDM (Discrete Fourier Transform spread OFDM)
 - CP-OFDM targeted at high throughput scenarios
 - DFT-s-OFDM targeted at power limited scenarios

Multiple Access:

- Orthogonal Multiple Access (OFDMA) (R-15)
- NOMA defined in R16

Coding:

- Orthogonal Multiple Access (OFDMA)
- Network selects coding scheme to match instantaneous channel conditions
 - Optimization of capacity with a reasonable BLER
 - Reduction of latency but possibly lower throughput rate (some methods take longer to encode)
- eMBB Traffic Low Density Parity Check (LDPC)
- PBCH & Control Polar Code

Numerology Definition

SCALABLE SUB-CARRIER SPACING (SCS) - ΔF

FR1 Operation

	μ	Δf = 2 ^μ ·15 kHz	Cyclic Prefix	N _{RB} ^{max, μ}	N ^{subframe, μ} slot	
Initial	0	15 kHz	Normal	275	1	
Access	1	30 kHz	Normal	275	2	
	2	60 kHz	Normal, Extended	275	4	

FR2 Operation

	μ	Δf = 2 ^μ ·15 kHz	Cyclic Prefix	N ^{max, μ} RB	N ^{subframe, μ} slot	
lin iti a l	2	60 kHz	Normal, Extended	275	4	
Access -	3	120 kHz	Normal	275	8	
	4	240 kHz	Normal	138	16	
	5	480 kHz	Normal	69	32	

Use Cases for Different Subcarrier Spacing

WAVEFORM, NUMEROLOGY AND FRAME STRUCTURE

Flexible Numerology

MAXIMUM TRANSMISSION BANDWIDTH CONFIGURATION NRB

Spectrum utilization for FR1 (450 MHz - 6 GHz): 3GPP 34.38.521-1 table 5.3.2-1

808	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
303	N _{RB}									
15 kHz	25	52	79	106	133	216	270	N/A	N/A	N/A
30 kHz	11	24	38	51	65	106	133	162	217	273
60 kHz	N/A	11	18	24	31	51	65	79	107	135

Spectrum utilization for FR2 (24.25 GHz – 52.6 GHz): 3GPP 34.38.521-2 table 5.3.2-1

606	50 MHz	100 MHz	200 MHz	400 MHz
363	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60 kHz	66	132	264	N/A
120 kHz	32	66	132	264

5G NR Max number of Sub Carriers = 3276 (273 PRBs)

Flexible Numerology

MINIMUM GUARDBAND

.5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each UE channel bandwidth and SCS is specified in Table 5.3.3-1,

Table 5.3.3-1: Minimum g	guardband for each UE channel bandwidth and SCS (kH	− ΙΖ) .
--------------------------	---	----------------

SCS (kHz)	5 MHz .	10 MHz -	15 MHz	20 MHz -	25 MHz -	30 MHz -	40 MHz .	50 MHz -	60 MHz -	80 MHz .	90 MHz 4	100 MHz 。	ç
15 .	242.5	312.5	382.5 .	452.5	522.5	592.5	552.5	692.5	N/A -	N/A -	N/A -	N/A .	÷
30 .	505 .	665 .	645 .	805	785 🖉	945 .	905	1045 .	825 -	925 -	885 .	845 .	e l
60 .	N/A -	1010 -	990 .	1330 -	1310 .	1290 .	1610 -	1570 .	1530 .	1450	1410 .	1370 -	e l

Figure 5.3.3-3 Guard band definition when transmitting multiple numerologies

Figure 5.3.3-2: UE PRB utilization

Frame Structure

WAVEFORM, NUMEROLOGY AND FRAME STRUCTURE

Fixed size	Radio Frame Duration: 10 ms										
Fixed [size	SF# 0 1 ms	SF# 1 1 ms	SF# 2 1 ms	SF# 3 1 ms	SF# 4 1 ms	SF# 5 1 ms	SF# 6 1 ms	SF# 7 1 ms	SF# 8 1 ms	SF# 9 1 ms	
Size depends on µ	Slot #0									Slot # 2 ^µ -	

A slot is one possible scheduling unit.

Mini-Slot is a minimum scheduling unit with 7, 4 or 2 OFDM symbols

μ	N ^{slot} symb	N ^{subframe,µ} slot	$N_{slot}^{frame,\mu}$	Slot duration
0 15 kHz	14	1	10	1 ms
1 30 kHz	14	2	20	500 µs
2 60 kHz (normal CP)	14	4	40	250 µs
2 60 kHz (extended CP)	12	4	40	250 µs
3 120 kHz	14	8	80	125 µs
4 240 kHz	14	16	160	62.5 µs

Ref: 3GPP TS 38.211 4.3

Slot Format Indication

WAVEFORM, NUMEROLOGY AND FRAME STRUCTURE

- Slot Format Indication informs the UE whether an OFDM symbol is *Downlink*, *Uplink* or *Flexible*
- SFI can indicate link direction over one or many slots (configured through RRC)
- The SFI carries an index to a pre-configured UE-specific table (configured through RRC)
- SFI can be either:
 - Dynamic (i.e. through a DCI)
 - UE assumes there is no conflict between dynamic SFI and DCI DL/UL assignments
 - Static or semi-static (i.e. through RRC)

5G NR Slots Formats

TS 38.211 TABLE 4.3.2-3: SLOT FORMATS

D: Downlink symbol U: Uplink symbol X: Flexible symbol

Format	Symbol number in a slot													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	D	D	D	D	D	D	D	D	D	D	D	D	D	D
1	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	D	D	D	D	D	D	D	D	D	D	D	D	D	Х
4	D	D	D	D	D	D	D	D	D	D	D	D	Х	Х
5	D	D	D	D	D	D	D	D	D	D	D	Х	Х	Х
6	D	D	D	D	D	D	D	D	D	D	Х	Х	Х	Х
7	D	D	D	D	D	D	D	D	D	Х	Х	Х	Х	Х
8	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U
9	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U	U
10	Х	U	U	U	U	U	U	U	U	U	U	U	U	U
11	Х	Х	U	U	U	U	U	U	U	U	U	U	U	U
12	Х	Х	Х	U	U	U	U	U	U	U	U	U	U	U
13	Х	Х	Х	Х	U	U	U	U	U	U	U	U	U	U
14	Х	Х	Х	Х	Х	U	U	U	U	U	U	U	U	U
15	Х	Х	Х	Х	Х	Х	U	U	U	U	U	U	U	U
16	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
17	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
18	D	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
19	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U
20	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U
21	D	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U
22	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U	U
23	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U	U
24	D	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	U	U
25	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	U	U	U
26	D	D	Х	Х	Х	Х	Х	Х	Х	Х	Х	U	U	U
27	D	D	D	Х	Х	Х	Х	Х	Х	Х	Х	U	U	U
28	D	D	D	D	D	D	D	D	D	D	D	D	Х	U
29	D	D	D	D	D	D	D	D	D	D	D	Х	Х	U
30	D	D	D	D	D	D	D	D	D	D	Х	Х	Х	U

31	D	D	D	D	D	D	D	D	D	D	D	Х	U	U
32	D	D	D	D	D	D	D	D	D	D	X	X	Ŭ	Ŭ
33	D	D	D	D	D	D	D	D	D	X	X	X	Ŭ	Ŭ
34	D	X	Ū	Ū	Ū	Ū	Ū	Ū	Ū	U	U	U	Ŭ	Ŭ
35	D	D	X	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ŭ	Ŭ	Ŭ
36	D	D	D	X	U	Ū	Ŭ	Ū	Ū	U	Ū	U	Ū	U
37	D	Х	Х	U	U	U	U	U	U	U	U	U	U	U
38	D	D	Х	Х	U	U	U	U	U	U	U	U	U	U
39	D	D	D	Х	Х	U	U	U	U	U	U	U	U	U
40	D	Х	Х	Х	U	U	U	U	U	U	U	U	U	U
41	D	D	Х	Х	Х	U	U	U	U	U	U	U	U	U
42	D	D	D	Х	Х	Х	U	U	U	U	U	U	U	U
43	D	D	D	D	D	D	D	D	D	Х	Х	Х	Х	U
44	D	D	D	D	D	D	Х	Х	Х	Х	Х	Х	U	U
45	D	D	D	D	D	D	Х	Х	U	U	U	U	U	U
46	D	D	D	D	D	D	Х	D	D	D	D	D	D	Х
47	D	D	D	D	D	Х	Х	D	D	D	D	D	Х	Х
48	D	D	Х	Х	Х	Х	Х	D	D	Х	Х	Х	Х	Х
49	D	Х	Х	Х	Х	Х	Х	D	Х	Х	Х	Х	Х	Х
50	Х	U	U	U	U	U	U	Х	U	U	U	U	U	U
51	Х	Х	U	U	U	U	U	Х	Х	U	U	U	U	U
52	Х	Х	Х	U	U	U	U	Х	Х	Х	U	U	U	U
53	X	X	X	X	U	U	U	X	X	X	X	U	U	U
<u>54</u>	D	D	D	D	D	X	U	D	D	D	D	D	X	U
<u> </u>	D	D	X	U	U	U	U	D	D	X	U	U	U	U
<u> </u>	D	X	U	U	U	U	U	D	X	U	U	U	U	U
57	D	D	D	D	X	X	U	D	D	D	D	X	X	U
58	D	D	X	X	0	0	U	D	D	X	X	U	0	U
59	D	X	X	U	U	U	U	D	X	X	U	U	U	U
60		X D	×	×	×		0	D	× D	×				0
62 255	U	D	^	^	^	^	Boost	U	D	^	^	~	^	U
02 - 200							nesei	veu						

Ref: 3GPP TS 38.211 Table 4.3.2-3

5G NR TDD Slot Format Combinations Examples

Slot (format 28)

SOURCE: ERICSSON

DL-heavy transmission with UL part

UL-heavy transmission with DL Control

Slot aggregation for DL-heavy transmission (e.g, for eMBB)

Slot aggregation for UL-heavy transmission (e.g, for eMBB)

Slot (format 34)	Slot (format 34)					
Slot (format 0)	Slot (format 28)					
Slot (format 34)	Slot (format 1)					
I						

Slot (format 28)

DL symbol
UL symbol

Multiplexing eMBB and URLLC data (on PDSCH)

- Dynamic resources sharing between <u>high data rate and low latency traffic</u>
 - Using <u>pre-emption</u> by scheduling URLLC services on overlapping time/frequency resources
 - If the code block was affected by pre-emption, the buffer should be flushed (and not combined)
 - Or without pre-emption by scheduling on non-overlapping time/frequency resources
- Indication to UEs of the impacted eMBB resources is made via using group-common PDCCH

KEYSIGH1

Opt. 1: In current slot

Understanding 5G NR Standards

5G

AGENDA

- Technology Overview & Timeline
- Numerology & Frame Structure
- Carrier Aggregation & Bandwidth Adaptation

Bandwidth Part

3GPP TS 38 SERIES STANDARD

- <u>Up to 4</u> bandwidth part configurations for each component carrier can be semi-statically signaled to a UE
 - Only one BWP in DL and one in UL is active at a given time instant
- Configuration parameters include:
 - Numerology: CP type, subcarrier spacing
 - Frequency location: the offset between BWP and a reference point is implicitly or explicitly indicated to UE based on common PRB index for a give numerology
 - Bandwidth size: in terms of PRBs
 - CORESET: required for each BWP configuration in case of single active DL bandwidth part for a given time
 instant

Bandwidth Part

- NR provides a means of operating UEs with smaller BW than the configured CBW, which makes NR an <u>energy efficient</u> solution despite the support of wideband operation.
- The BW of a BWP cannot exceed the configured CC BW for the UE.
- The BW of the BWP must be <u>at least as large as one SS block BW</u>, but the BWP may or may not contain SS block.
- The granularity of BW configuration is <u>one PRB</u>.
- For each serving cell, <u>DL and UL BWPs are configured separately and independently</u> for paired spectrum and up to four BWPs can be configured for DL and UL each. For unpaired spectrum, a DL BWP and a UL BWP are jointly_configured as a pair and up to 4 pairs can be configured.
- There can be maximally <u>4 UL BWPs configured for a supplemental UL (SUL)</u> as well.
- <u>The HARQ retransmission across different BWPs</u> is supported when a UE's active BWP is switched.

Ref : 3GPP TR 38.802 V14.2.0

Example of Bandwidth Part Operation

BANDWIDTH PARTS

Single-Carrier and Multi-Carrier Operation

- Maximum single-CC bandwidth is 400 MHz
- Maximum number of CCs is 8

Single-Carrier Operation

Multi-Carrier Operation

Carrier Aggregation Types

• Component Carriers may be in the same band and adjacent

• Or they could be in the same band, non-contiguous

• Or in different bands

Supplemental Uplink

- The UE may be configured with additional supplemental uplink
 - An additional lower frequency band UL carrier
 - Enhances data rate and deployment range in NSA mode
 - Improve performance at cell edge in SA mode
- Supplemental uplink is different from carrier aggregation because the UE may transmit on
 - The supplemental uplink OR
 - UL component carrier (but not on both at the same time)

Operating	Uplink (UL)	Downlink (DL)	Duplex
Band	BS Receive / UE Transmit	BS Transmit / UE Receive	Mode
n80	1710 – 1785 MHz	N/A	SUL
n81	880 – 915 MHz	N/A	SUL
n82	832 – 862 MHz	N/A	SUL
n83	703 – 748 MHz	N/A	SUL
n84	1920 – 1980 MHz	N/A	SUL
n86	1710 – 1780 MHz	N/A	SUL

NEW

 \mathbf{O}

MR-DC Frequency Notation

Table 4.1-2: Example notation for SUL and NR-LTE coexistence.

Representation	Corresponding functionality				
SUL_n78-n81	Band combination of NR band n78 and band n81(SUL) for				
	NR operation.				
DC_3-SUL_n78-n80	LTE-NR DC between LTE Band 3, and NR bands n80				
	(SUL) and n78 including NR-LTE coexistence with UL				
	sharing.				

 Supplemental uplink differs from the aggregated uplink in that the UE may be scheduled to transmit either on the supplemental uplink or on the uplink of the carrier being supplemented, but not on both at the same time.

Ref : 3GPP TS 38.300

Figure B.1-1: Example of Supplementary Uplink

Understanding 5G NR Standards

5 H

AGENDA

- Technology Overview & Timeline
- Numerology & Frame Structure
- Protocol Structures, Layers, Signals & Channels
- Network Architecture, Deployment Options

5G NR Deployment Options

START WITH NSA

STANDALONE MODE (SA)

OPTION 2: Standalone NR

OPTION 5: Standalone LTE Rel-15, connected

Rel-15 Early Drop (December 2017)

- NR NSA eNB as master node
- 4G Core Network (EPC)
- Enhanced LTE (eLTE)

Rel-15 (June 2018)

- 5G Core Network
- Enhanced LTE (eLTE)
- NR SA and NSA Combinations

Multi-RAT Dual Connectivity with LTE Core (EPC)

OPTIONS 3/3A/3X

- Dual Connectivity with EPC: E-UTRA-NR Dual Connectivity (EN-DC)
 - Master Node: eNB (LTE)
 - Secondary Node: gNB (5G NR)

x2 interface

OPTION 3: Non-Standalone NR, LTE assisted, EPC connected

No load-sharing

OPTION 3A: Non-Standalone NR, LTE assisted, EPC connected

PDCP split

OPTION 3X: Non-Standalone NR, LTE assisted, EPC connected

Multi-RAT Dual Connectivity with 5G Core (5GC)

OPTIONS 7/7A/7X

- Dual Connectivity with NG-RAN: NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC)
 - Master Node: ng-eNB (eLTE) eNB evolved (eLTE)
 - Secondary Node: gNB (5G NR)

OPTION 7: Non-Standalone NR, LTE assisted, 5GC connected

OPTION 7A: Non-Standalone NR, LTE assisted, 5GC connected

OPTION 7X: Non-Standalone NR, LTE assisted, 5GC connected

Multi-RAT Dual Connectivity with 5G Core

OPTIONS 4/4A

- Dual Connectivity with NG-RAN: NR-E-UTRA Dual Connectivity (NE-DC)
 - Master Node: gNB (5G NR)
 - Secondary Node: ng-eNB (eLTE)

OPTION 4: Non-Standalone eLTE, NR assisted, 5GC connected OPTION 4A: Non-Standalone eLTE, NR assisted, 5GC connected

Summary

Table 4.3-1: Definition of suffixes

	Clause suffix	Variant .	ę
	None .	Single Carrier	
	A	Carrier Aggregation (CA)	\checkmark
\checkmark	B	Dual-Connectivity (DC)	
	C *	Supplement Uplink (SUL)	\checkmark
1	، D		ъ.

Understanding 5G NR Standards

5G

AGENDA

- Technology Overview & Timeline
- Numerology & Frame Structure
- Network Architecture, Deployment Options
- Beams, Beamforming & Beam Management

Moving to mmWave Change Everything

Question: Is it better to have high gain or low gain antenna?

The plan to introduce cellular services in frequency bands >6 GHz is driving an **abrupt and unprecedented change** in how devices and systems have to be designed, operated and tested.

- To overcome these losses and provide a realistic link budget, it is necessary to use high gain antennas comprised of multiple elements at both ends of the link
- High gain antennas create narrow beam width signals
- Radio propagation at mmWave is very different: very sparse and spatially dynamic, unlike rich multipath with Rayleigh fading

The Friis propagation equation predicts losses at mmWave frequencies:

$$P_r = P_t + G_t + G_r + 20\log_{10}\left(\frac{\lambda}{4\pi R}\right)$$

Antenna Patterns vs. Number of Elements

New Radio mmWave Spatial Domain Optimization

Enter the Spatial Domain

STATIC TDD VS DYNAMIC TDD

 In Static-TDD, transmission and reception of data occur at the same frequency band, through allocating distinct time slots for UL and DL. Moreover, the transmission bandwidth of each one of the links is fixed depending on the average traffic load.

Enter the Spatial Domain

STATIC TDD VS DYNAMIC TDD

 In Dynamic TDD enables efficient and flexible asymmetric services, which improves the spectral efficiency of wireless networks.

To Conclude: Beamforming/Management

- The network and device will use beamforming antennas (maybe as low as 12 degrees?)
- Narrow beams increase the received power (Signal-to-Noise) level
- Beams to different UEs can re-use the same time and frequency resources
- All common and dedicated channels are transmitted (and received) over beams
- Beams are bilateral for (t, f, (x,y,z)) TDD operation only

		0
X X X X X X X X X X X X X X X X X X X		

To Conclude: 5G Operation at mmWave Frequencies

- mmWave has great potential (spectrum!)
- mmWave signals do not bend around corners (diffract) and are easily blocked or attenuated
- mmWave signals act more like light rays so can be directed using special antennas
- Path loss through the air is much greater at mmWave than at LTE bands
- Changing from 1 GHz to 28 GHz path loss increases by 28 dB over 1 m

Cables are lossy and expensive, galvanic connectors may not be exposed/available, <u>3GPP requires FR2 tests to be radiated</u>

Therefore, testing will be mostly performed over the air

Understanding 5G NR Standards

-7 H

AGENDA

- Technology Overview & Timeline
- Numerology & Frame Structure
- Network Architecture, Deployment Options
- Beams, Beamforming & Beam Management
- Protocol Structures, Layers, Signals & Channels

Protocol Structure

5G NR PROTOCOL LAYERS

- Higher protocol layers based on LTE
 - User data all IP
 - Registration, mobility, session management, handovers
 - Additions for lower layer enhancements (beamforming)
- Enhancements to security in NAS and PDCP
 - Service Data Adaptation Protocol: new protocol layer to take care of QoS
- PHY sees the largest area of change

5G NR Protocol Structure

Layer 2 Changes

- New SDAP layer for QoS management in User Plane
 - Mapping between QoS flow and data radio bearer and marking QoS flow ID in DL and UL packets, all the way to 5GC
- PDCP duplication configuration: "legs" added
 - Map PDUs to more than 1 logical channel (duplicated PDCP PDUs) would be sent over different component carriers

RLC/MAC

- Support for beam management procedures and transmission modes using different numerologies and/or TTI duration
- Reduction of processing latency: Concatenation is performed in MAC by placing the MAC headers immediately in front of the corresponding MAC SDUs
 Hence, no concatenation required in RLC

Signals, Channels & Mapping

PHYSICAL CHANNELS & SIGNALS

	NR Channels/Signals	Description	LTE Equivalent
	PUSCH	Physical Uplink Shared Channel	PUSCH
ink	PUSCH-DMRS, PUSCH-PTRS		PUSCH-DMRS
	PUCCH	Physical Uplink Control Channel	
IqL	PUCCH-DMRS		PUCCH
	PRACH	Physical Random Access Channel	PRACH
	SRS	Sounding Reference Signal	SRS
	PDSCH	Physical Downlink Shared Channel	PDSCH
	PDSCH-DMRS, PDSCH-PTRS		PDSCH-DMRS
~	PBCH	Physical Broadcast Channel	
lin	PBCH-DMRS		PBCH
v	PDCCH	Physical Downlink Control Channel	PDCCH, EPDCCH
νο	PDCCH-DMRS		EPDCCH-DMRS
	CSI-RS	Channel-State Information Reference Signal	CSI-RS
	PSS	Primary Synchronization Signal	PSS
	SSS	Secondary Synchronization Signal	SSS

Red = New NR channels/signals vs. LTE

Note: LTE ONLY channels such as PCFICH, PHICH, C-RS, etc. are not shown

Downlink Signals & Physical Channels

Signals	Channels
PSS, SSS: Primary and secondary synchronisation signals	PBCH: Physical Broadcast Channel
DM-RS: Demodulation Reference signals (for PDSCH/PDCCH, PBCH)	PDCCH: Physical Downlink Control Channel
PT-RS: Phase Tracking Reference Signal (for PDSCH)	PDSCH: Physical Downlink Shared Channel
CSI-RS: Channel State Information Reference Signal	

- DM-RS for acquisition of PBCH, PDCCH and PDSCH
 - DM-RS for PBCH is spread over the same bandwidth as the PBCH (on the same symbols)
- CSI-RS for connected state beam management
 - Refinement of the beam when a UE is in the connected state (and moving)
- PT-RS is for phase tracking and phase noise compensation
 - Fine time and frequency tracking
 - Path delay spread and Doppler spread

Uplink Signals & Physical Channels

Signals

DM-RS: Demodulation Reference signals (for PUSCH/PUCCH)

PT-RS: Phase Tracking Reference Signal (for PUSCH)

SRS: Sounding Reference Signal

- **DM-RS:** Provides synchronisation and uplink channel estimation
 - Separate DMRS for PUSCH and PUCCH
 - Sent in 1 or 2 symbols every timeslot for PUSCH
- SRS: Sent by the mobile upon request of the gNB to allow uplink channel estimation when no other transmissions are scheduled (on PUSCH or PUCCH)
 - Periodicity and subframe offset are configurable

Channels

PUCCH: Physical Uplink Control Channel

PUSCH: Physical Uplink Shared Channel

PRACH: Physical Random Access Channel

Understanding 5G NR Standards

56

AGENDA

- Technology Overview & Timeline
- Numerology & Frame Structure
- Network Architecture, Deployment Options
- Beams, Beamforming & Beam Management
- Protocol Structures, Layers, Signals & Channels
- Take Away

LTE vs. NR Comparison

	LTE (Based on 3GPP Rel-15)	New Radio (Based on 3GPP Rel-15)
Frequency Band	Sub-6 GHz	FR1, <mark>FR2</mark>
Max Bandwidth (CC)	20 MHz	FR1: 5, 10, 15, 20, <mark>25, 30, 40, 50, 60, 80, 100 MHz</mark> FR2: 50, 100, 200, 400 MHz
Max CCs	5 (Rel-10) / 32 (Rel-12). 5 current implementation	8
Subcarrier Spacing	15 kHz	<mark>2ⁿ ⋅ 15 kHz</mark>
Waveform	CP-OFDM for DL; SC-FDMA for UL	CP-OFDM (DL); CP-OFDM and DFT-s-OFDM (UL)
Modulation	Up to 256 QAM DL (moving to 1024 QAM); Up to 64 QAM UL	Up to <mark>256 QAM UL</mark> & DL
Max Number of Subcarriers	1200	3276
Subframe Length	1 ms (moving to 0.5 ms)	1 ms
Latency (Air Interface)	10 ms (moving to 5 ms)	1 ms
Slot Length	7 symbols in 500 µs	14 symbols (duration depends on SC spacing)2, 4 and 7 symbols for mini-slots
Channel Coding	Turbo Code (data); TBCC (control)	LDPC (data); Polar Codes (control)
Initial Access	No beamforming	Beamforming
ΜΙΜΟ	Up to 8x8	Up to 8x8
Reference signals	UE Specific DMRS and Cell Specific RS	Front-loaded DMRS (UE-specific)
Duplexing	FDD, Static TDD	FDD, Static TDD, Dynamic TDD

3GPP 5G NR Specification

SINGLE SPECIFICATION COVERING FR1 AND FR2

	FR1 – Frequency Range 1	FR2 – Frequency Range 2
Spec	5G NR NSA and SA	5G NR NSA
Frequency	450 MHz ~ 7125 MHz e.g. 3.4 – 3.7 GHz, 4.4 – 4.9 GHz	24.520 GHz ~ 52.600 GHz e.g. 39 GHz (3 GHz of spectrum), 28 GHz (800 MHz)
Bandwidth (cc)	Up to <mark>100 MHz</mark>	Up to <mark>400 MHz</mark>
Maximum CCs	8	8
DL MIMO	8x8	<mark>2x2</mark>
Numerology (subcarrier spacing)	2 ⁿ · 15 kHz n = {0, 1, 2} 15 kHz (n=0, 1x LTE), 30 kHz (n=1, 2x LTE)	2 ⁿ · 15 kHz n = {2, 3, 4}; 60 kHz (n=2, 4x LTE) 120 kHz (n=3, 8x LTE), 240 kHz (n=4, 16x LTE)
Waveform	DL: CP-OFDM / UL: CP-OFDM or DFT-s-OFDM	DL: CP-OFDM / UL: CP-OFDM or DFT-s-OFDM
Subcarriers	3276	3276
Subframe length	1ms	1ms
Slot length (t)	Max @60 kHz SCS: 250µs	Max @240 kHz SCS: 62.5 μs

Specifications – www.3gpp.org

Specification	Title
38.300	Overall Description
38.902	Study on New Radio Access Technology
38.211	Physical Channels and Modulation
38.212	Multiplexing and Channel Coding
38.213	Physical Layer Procedures for Control
38.214	Physical Layer Procedures for Data
38.321	NR Medium Access Control (MAC)
38.322	NR Radio Link Control (RLC)
38.323	NR Packet Data Convergence Protocol (PDCP)
37.324	NR Service Data Protocol (SDAP)
38.331	NR Radio Resource Control (RRC)
24.301	Non-Access Stratum (NAS)
33.501	Security Architecture and Procedures for 5G
37.340	NR Multi-connectivity Overall Description

Key Takeaways

UNDERSTANDING THE ROAD AHEAD

- Standards will continue to evolve through Rel-16 and beyond: your test solutions need to be flexible and scalable
- Higher frequencies, wider channel bandwidths, and dual connectivity increase the number of test cases and test complexity
- mmWave and MIMO introduce new OTA test requirements for 5G NR devices and base stations
- New initial access and control procedures will require more testing

KEYSIGHT TECHNOLOGIES

