5G and Automotive Component Characterization at mmWave Frequencies 5G及汽車電子毫米波元件驗證方案

Kenny Liao

2019/1/15&16

Senior Project Manager / Keysight Technologies

Millimeter Component Characterization

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- N5252A E-band VNA system
- Conclusions

Application Space

MILLIMETER WAVE FREQUENCIES

Commercial Industry

Wireless backhaul

Next Gen wireless communications "5G" 38 – 40 GHz & 60-90 GHz

WiGig 802.11 ad

57-71 GHz

Automotive radar 77 GHz & 120 GHz

Courtesy www.NIST.gov Secure communication system

44 GHz to 93 GHz

Radar/EW 12 -18 GHz & 26-40 GHz 94 GHz to 650 GHz

3

Millimeter Wave imaging 35 GHz to 325 GHz Aerospace Defense Industry

Millimeter Wave Components

THE NEED FOR CHARACTERIZATION

- Millimeter wave components are underlying building blocks of systems in:
 - Imaging and sensing
 - Cyber security
 - EW Radar and communication systems
- Device characterization and validation of millimeter wave components
 - Millimeter wave couplers & filters Front end Tx/Rx
 - Mixers (Fundamental, Harmonic and differential) Receivers and upconverters
 - Millimeter wave amplifiers Transmitters
 - Millimeter wave sources Transmitters
- Magnitude and phase information crucial for simulation during design stage

ş

- Ensure devices meet specifications during manufacturing
- PNA-TDR

Millimeter Component Characterization

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- Conclusions

Typical System Implementation

DISTRIBUTED ARCHITECTURE

Network Analyzer is the measurement engine

Required **Test Set Controller** interfaces to modules

Frequency Extenders provide frequency conversion and signal coupling

Device under test

Millimeter VNA Architecture

MEASUREMENT REQUIREMENTS

- Bring the measurement to the device
- Stable system architecture
- Sufficient power to get desired compression behavior
- Accurately control the phase of the stimulus
- Fully corrected and traceable measurements with uncertainty

Distributed Architectures Challenges

ADDING LOW FREQUENCY

Keysight implementation of low frequency coverage 500 Hz - 100 MHz

8

Distributed Architectures Challenges

ACTIVE DEVICE CHARACTERIZATION

- Provide Kelvin bias at the DUT
- Limited ground loops.
- Low leakage typically less than 400 pA is desirable

LEMO Sense Connector

BNC Force Connector

Vd = 0.1 and 1.5V The measured Ids for Low Vd are different (from RF and DC). This will cause the differences with extraction

Distributed Architectures Challenges

SIZE STABILITY TRADEOFF

10

Millimeter Component Characterization

. 11

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- USB VNA
- Conclusions

Millimeter Wave System Calibration

MILLIMETER WAVE CALIBRATION CHALLENGES

- Wide frequency coverage 500 Hz to 125 GHz
- Broadband load
- Closed form polynomial models are limited
- Inductance short model
- Capacitance open model
- Load match and delay
- Traditional SOLT methods of error extraction limited
- Limited Smith chart coverage

Calibration

DATABASED OFFSET SHORTS

- Key features of a millimeter wave coaxial calibration kit
 - Eliminate need for broadband load
 - Implements multiple shorts to cover frequency range
 - Characterize devices using a database model
 - Enhanced least squares fit method of calibration

13

Millimeter Wave System Calibration

MAINTAIN TRACEABILITY AND UNCERTAINTY

- Use of standard connectors versus frequency coverage
- Standards compliant connectors imply ease of traceability
- Traceable 1.0 mm calibration through 1.0 mm calibration kit devices

14

Broadband Millimeter Wave System Calibration

ON-WAFER CALIBRATION STANDARDS

- Supported Calibration Methods
 - SOLT Short Open Load Thru
 - SOLR Short Open Load Reciprocal
 - LRM Line Reflect Match
 - LRRM Line Reflect Reflect Match
 - TRL Thru Reflect Line
- Special requirements > 50 GHz
 - Microwave absorbing ISS holder reduces unwanted mismatch
 - Ideal Calibration applications LRRM, LRM & SOL-R calibrations
 - ISS enhanced for CPW transmission mode thinned to 10 mils

Power Calibration

RECEIVER CALIBRATION

Traditional methods

- Utilize multiple sensors to cover frequency range
- Typically waveguide sensors
- Coaxial sensors limited to diode based detection

Broadband Power sensor technology

- Thermal based technology
- Easily expanded to 120 GHz using calorimeter characterization

Millimeter Component Characterization

17

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- Conclusions

AMPLIFIER SPECIFICATIONS

- Input match
- Gain
- Output match
- Reverse isolation
- Compression
- Total harmonic distortion
- Low frequency performance

LINEAR PERFORMANCE

1DB COMPRESSION

- Requires accurate characterization
 of power
- Accurate measurement of the power
- Source power sweep versus frequency

Amplifier Compression

1DB GAIN COMPRESSION

21

Amplifier Spectrum

HARMONIC CHARACTERISTICS

22

Amplifier THD

DIFF IQ THD MEASUREMENT

 Utilizes the ability to set sources and tune receivers independently on a VNA

urement Set l	Jp				-
quency Range	e				
Range Name	Settings				
F1	CW Freq 30.000	0000000 GHz			
F2	CW Freq 60.000	0000000 GHz			
F3	CW Freq 90.000	0000000 GHz			
F4	CW Freq 120.00	00000000 GHz		E	dit
Now	B	emove	Save	Load	
urces Source Name	State	Frequency	Power	Phase	
Source Name	State Auto On	Frequency F1	Power 0.00dBm	Phase N/A Edi	
Source Name Port 1 Port 2	State Auto On Off	Frequency F1 F1	Power 0.00dBm -5.00dBm	Phase N/A Edi N/A	t
Source Name Port 1 Port 2 Port 3	State Auto On Off Off	Frequency F1 F1 F1 F1	Power 0.00dBm -5.00dBm -5.00dBm	Phase N/A Edi N/A N/A	

F1

OK

Port 1 Src2

Add Source...

Off

Power ON (All Channels)

Apply

N/A

-5.00dBm

Cancel

23

Help

TOTAL HARMONIC DISTORTION

File	Instrumen	t Response	Stimulus U	Itility Help					
						Active Windo	w 22		
<	Sheet 1	Sheet 2	Sheet 3 S	Sheet 4 Sheet 5	Sheet 6				>
	Tr 22 OPwr_F1 LogM 10.00dB/ 0.00dB Tr 21 IPwr_F1 LogM 10.00dB/ 0.00dB								
	Tr 23 OPwr_F2 LogM 10.00dB/ 0.00dB Tr 24 OPwr_F3 LogM 10.00dB/ 0.00dB								
	Tr 25	OPwr_F4 LogM	4 10.00dB/ 0.00	dB		Tr 26 THD Real 2.000U/ 0	.00U		
	10						1: 3	30.000 000 000 GHz	5.19 dB
							1: 3	30.000 000 000 GHz	-5.31 dB
	Free		Outrout		Matte			50.000 000 000 GHz	-26.52 dB
	Frequ	lency	Output	Power (dBm)	vvatts		1. 8	20 000 000 000 GHZ	-44 15 dB
F	und	30		5.19	3.30E-03	THD @ 2.89%		30.000 000 000 GHz	2.89 U
H	2	60		-26.52	2.23E-06				
H	3	90		-33.09	4.91E-07	Fund Power 5.19 d	IBM——–		
H	4	120		-44.15	3.85E-08	Input Power -5.31d	lBm		
	Total H	armonic Dis	stortion	2.89E+00					
	-2					2 nd Harmonic Pow	ver -26.5 d	IBm	
			3 ^{rf} Harmonic Powe	er -33 09 (dBm				
	-6 🚽								
						4" Harmonic Pow	er -44.15	dBm	
	-10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\cdots	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~
	>Ch7	7: DIQF1 Start	30.0000 GHz -					Sto	p 30.0000 GHz
	Ch7	: DIQF2 Start	60.0000 GHz -					Sto	p 60.0000 GHz
	Ch7	: DIQF3 Start	90.0000 GHz -					Sto	p 90.0000 GHz
2	2 Ch7	: DIQF4 Start	120.000 GHz -					Sto	p 120.000 GHz
Tr 26	Ch 7 In	tTrig Hold	BW=100k C 2	-Port SrcCal Sim	Pulse				
Svc	RFOn Upda	ateOn IntRef	no messages	~ ~ ~				LC	L 2017/07/27-16:00

. 7

.

.

Ì.,

0

LOW FREQUENCY PERFORMANCE

25

Millimeter Component Characterization

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- Conclusions

Receiver Tests

E-BAND RECEIVER

- Linear Gain
- Receiver Match
- Compression

E-Band Receiver Test

RECEIVER GAIN AND MATCH PERFORMANCE

RF Input Frequency: 60 GHz to 90 GHz — -20 dBm Received Power

2 GHz Base Band Frequencies

LO Input Frequencies

- 58 88 GHz Fundamental
- -10 dBm LO Power

RECEIVER GAIN AND MATCH PERFORMANCE

KEYSIGHT

29

RECEIVER GAIN COMPRESSION

RF Input Frequency: 60 GHz to 90 GHz -50 dBm to +5 Received Power

2 GHz Base Band Frequencies

LO Input Frequencies

- 58 88 GHz Fundamental
- -10 dBm LO Power

RECEIVER GAIN COMPRESSION

requency	Power	Compression	Mixer Frequency	Mixer Power	Mixer Setup	·
Compress	ion Meth	od				
Compr	ession fr	om Linear Gain				
Compr	ession fr	om Max Gain	Level	1.00 d	B	Back Off 10.00 dB
Compr	ession fr	om Back Off				
OXY C	mpressi	00	Delta X	10.00	dB 🚦	/ Delta Y 9.00 dB
© Comm	in the second second	nen Caturation	From M	ax Pout 0,100	dB	
Comp	655101111	om Saturation		oka ologi da anarasis		
SMART S	ween			2D S	veen	
Toleranc	e	0.500 dB	Safe Mode		mpression Po	oint Interpolation
Maximun	n Iteratio	ns 20	3			
=		= 0 100	u 			
Show	Iterations	s E Read DO	at Compression Po	Dint		
End of S	weep Co	ndition Def	fault 👻			
Cattling	Timo	0.0	00 mooo 👘			
Setting	(Inte	0.0				

RECEIVER GAIN COMPRESSION

Millimeter Component Characterization

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- Conclusions

Time and frequency domain

No difference in information content between the time domain and frequency domain

Time and frequency domain

Using Fourier Transform techniques, the time domain response can be mathematically transformed into the frequency domain response and back again without changing or losing any information.

Time domain measurements

TDR (Time Domain Reflection)

- Evaluate the impedance profile to locate discontinuities
- Shape and polarity of the reflections provide insight about the line

TDT (Time Domain Transmission)

- Evaluate propagation delay and rise time degradation
- Propagation delay important for differential signals
- Useful for monitoring crosstalk
 and mode conversion

Frequency domain measurements

Return Loss (Sdd11)

 Evaluate reflection of signal through interconnect

Insertion Loss (Sdd21)

- Evaluate attenuation of signal through the interconnect
- Useful for estimating highest useable frequency, or the bandwidth of the interconnect

Time domain response resolution

- Determines the degree to which closely spaced impedance mismatches can be resolved
- Inversely related to the frequency bandwidth

Increasing frequency bandwidth leads to finer time domain resolution

Time domain range (alias-free range)

- Discrete frequency points obtained by the VNA causes time domain response to repeat every 1/Δf seconds (aliasing in the time domain)
- Limits maximum DUT length that can be measured

Finer frequency domain resolution leads to longer time domain alias-free range

VNA or TDR Scope?

VNA or TDR Scope?

Measurements (Modes)	S93010A Time	domain S93011A PNA-TDR	TDR Scope
Frequency Domain (S-parameters)	Yes	Yes	Yes
Time Domain (TDR/TDT)	Yes	Yes	Yes
Eye Diagram / Mask Testing	No	Yes (simulated)	Yes (live)
Oscilloscope (measure waveforms)	No	No	Yes
Jitter Analysis	No	No	Yes

Features	S93010A Time domain	S93011A PNA-TDR	TDR Scope
Speed and Accuracy	Best	Best	Fair
ESD Robustness	Best	Best	Fair
Simple and Intuitive Operation	Fair	Yes	Yes
	2 2 A	5 5 5 S	

S93011 PNA-TDR vs S93010A Time domain

	S93010A Time domain	593011A PNA-TDR
Measurements	R. R. Mannell K. K.	
Frequency Domain (S-parameters)	Yes	Yes
Time Domain (TDR/TDT)	Yes	Yes
DC Estimation Method	Fair	Good
Eye Diagram / Mask Testing	No	Yes (simulated)
Advanced Signal Integrity Analysis Features		
Gating	Yes	Yes
Stressed Eye Diagram Analysis of Interconnects	No	Yes
Hot TDR (Avoid Spurious)	No	Yes
User Interface	Fair traditional VNA soft-key architecture	Good Similar look-and-feel to TDR scopes

S93011A PNA-TDR is a superset of S93010 Time domain

What is S93011A PNA-TDR?

S93011A PNA-TDR is an enhancement of the S93010A Time domain analysis software. The software, running on the PNA-X/PNA/PNA-L Series B-model Vector Network Analyzers, offers digital signal integrity engineers an **one box solution** for characterizing high speed serial interconnects.

3 Breakthroughs

for Signal Integrity Design and Verification

Simple and Intuitive Operation

Fast and Accurate Measurements

High ESD Robustness

www.keysight.com/find/pna-tdr

Simple and intuitive operation

File Instrument Response Stimulus Utility Help

- Dedicated GUI for TDR analysis provides intuitive operation for users not familiar to VNAs and S-parameter measurements
- Easily locate source of loss, reflections and crosstalk by simultaneous analysis of both time and frequency domains

Similar look-and-feel to TDR scopes

S93011A PNA-TDR Introduction

44

Simple and intuitive operation

Setup Wizard

- The Setup Wizard guides you through all of the steps, making setup intuitive and error-free
- Automatically sets the optimum parameters (range, resolution, windowing, etc.) for your DUT

Simple 4-step operation

S93011A PNA-TDR Introduction

47

Real-Time Analysis

TDR Scope

[Source]

•Source power rapidly decreases with increase in frequency

=> loss of accuracy for higher frequencies

[Receiver]

•Broadband

•All noise up to the bandwidth of the system is observed

=>NO noise reduction

S93011A PNA-TDR

[Source]

•Source power leveled and constant across entire frequency range

For further details (including mathematical analysis), refer to the White Paper "Comparison of Measurement Performance between Vector Network Analyzer and TDR Oscilloscope" (5990-5446EN).

Significant differences in performance due to the instrument architecture

System default calibration

To achieve reasonable accuracy without user calibration, calibration at the test ports is performed at the factory ("System Default" calset) and applied in the TDR Measurement Class.

User calibration is recommended for higher accuracy

Error correction technique comparison

Error Correction Techniques

Deskew

- Commonly used in time domain instruments
- Simple to perform
- Only corrects for delay

Full calibration (ECal)

- Commonly used in frequency domain instruments
- Requires more standards
- Accounts for all major sources of error

Measure the true performance of your device

Measurement comparison: Deskew vs Ecal (DUT = thru adapter)

Full calibration (ECal) Deskew Stimulus Utility Heli 50 mV Scale Per Division Scale Per Division 1 dB Tr 4 S22 LogM 10.00dB/ 0.00dB Tr 4 S22 LoaM 10.00dB/ 0.00dB 00dB/ 0 00dB Mismatch not removed... -20 Tr 8 S121 or M 0 (10.6 m)(8.01 mr 35.5 ps 26.7 ps 300m 300m 200m 200n Loss not removed... 100m 100mRise time degradation... 100m File **V 1** ? X TDR File V TDF Search Hot TDR Parameters Trace Contro Adv Wavefor Setup Single-Ended 2-Port T11 T12 T13 Time Doma Single-Ended Deskey T14 Measure Setup T21 T22 T23 TDR/TDT Wizard Config TDR/TD Deskew&Los ielectric Con T31 T33 elocity Fact Eye/Mask ECal Basic Mode >> T41 Source Powe L CL Tr 7

Full calibration (Ecal) recommended for higher accuracy

S93011A PNA-TDR Introduction

Higher ESD Robustness

PNA-TDR

Higher robustness against ESD, because protection circuits are implemented inside the instrument for all ports, while maintaining excellent RF performance.

Reduce instrument repair fees and downtime

The S93011A PNA-TDR application...

...provides a one-box solution for high speed serial interconnect analysis

...brings three breakthroughs for signal integrity design and verification

www.keysight.com/find/pna-tdr

S93011A PNA-TDR Introduction

New E-band VNA system, N5252A

Automotive and 5G

E-BAND APPLICATIONS

mmWave spectrum leading to a dramatic increase in bandwidth availability

N5252A E-band (60 G - 90 GHz) VNA system

- More affordable E-band VNA than PNA-based E-band VNA
- 2 or 4-port S-parameter measurements using PXI-VNA modules
- Power calibration at test ports with an external waveguide sensor
- LO signal supplied by a PXI-VNA card is daisy-chained to the other modules
- Dedicated modules for the use only with Keysight PXI VNA's
- Controlled by a desktop computer

Key measurement performance

- Frequency range: 60 GHz to 90 GHz
- Dynamic Range (BW=10Hz): 100 dB minimum / 110 dB typical
- Test Port Power: +13 dBm typical
- Magnitude Stability : +/- 0.15 dB, typical (over 1 hour in stable environment after warm-up)
- Phase Stability: +/- 2 degree, typical (over 1 hour in stable environment after warm-up)
- Test Port Interface: WR-12 IEEE 1785-2a compatible with UG-387/UM
- Test cable length: 1.2m

Configuration

Item	Description		2-port	4-port
N5252A	PXI-based E-band (60 G – 90 GHz) VNA system	43 	Option 200	Option 400
Items included in the N5252A		2 10	qty	qty
VDI VNAX WR-12 modules	WR-12, 60 GHz - 90 GHz, TxRx Mini VNAX with 1.2r	n cable	2	4
N5262AC12	60 GHz - 90 GHz, WR12 Calibration kit from VDI	20 20	1	1
M9374A	PXIe Network Analyzer 300 KHz - 20 GHz	41) 	- ****** 2	4
M9374A-551	N-Port Calibration Software	80 	1	1
Y1242A	PXI Jumper Cables	1 A	2	4
M9005A with opt 002	5 slot PXI Mainframe with PCIe Desktop adapter		1	1
Y1213A	PXI EMC Filler Panel kit		3	1
Y1212A	PXI Slot Blocker		3	1

Optional items	Description
M9374AU-010	Time Domain
U8489A and E281CS	120 GHz USB power sensor, and 1mm coax (f) to WR-12 waveguide adapter
E8486A and N1913/4A or E4416/7A	E-band waveguide power sensor, and power meter

A desktop computer is required.

.

Desktop computer requirement

- Operating systems: Windows 7 64 bit or Windows 10 64 bit
- Processor speed: 2.4 GHz recommended, (1.5 GHz dual core x64 minimum)
- Available memory: 8 GB recommended; 1 GB minimum
- Available disk space: 1.5 GB available hard disk space minimum
- Instrument driver: Keysight IO libraries Ver. 18.1.23218.2
- An open PCIe slot

Millimeter Component Characterization

DISCUSSION TOPICS

- Millimeter Wave Component Application Space
- Millimeter Vector Network Analyzer Architecture
- Calibration at Millimeter Wave Frequencies
- Amplifier Characterization
- Receiver Characterization
- PNA-TDR
- N5252A E-band VNA system
- Conclusions

Component Characterization

CONCLUSIONS

- Clearly a big drive for utilization of millimeter wave frequencies
- Millimeter vector network analyzer architecture is key to support characterization of these components
- Capability to fully calibrate impedance and power ensures that millimeter wave measurements are accurately computed
- Software applications key to make measurements simple
 - Amplifier characterization
 - Receiver characterization
- PNA-TDR

