Challenges and Solutions of Advanced Automotive Radar Design and Test Lifecycle

Senior Project Manager	
KEYSIGHT TECHNOLOGIES	

Automotive Radar Design and Test Lifecycle Webinar TOPICS **Automotive Radar Review Enabling Technologies** Design & Test Challenges / Solutions

Autonomous Driving System

ENABLING TECHNOLOGIES

- Sensors
- Radar
- LIDAR
- Camera
- Wireless connections
 - 2/3/4G and coming 5G
 - 802.11p DSRC
- Automotive Ethernet
 - BroadR-Reach, 100 / 1000 BASE-T
- Navigation systems
- Processors
- Artificial Intelligence
- High Definition Mapping

Under the bonnet How a self-driving car works Signals from GPS (global positioning system) satellites are combined with readings from Lidar (light detection and ranging) sensors bounce pulses of light off the tachometers, altimeters surroundings. These are analysed to and gyroscopes to provide identify lane markings and the more accurate positioning edges of roads Video cameras detect traffic lights read road signs, keep track of the position of other vehicles and look out for pedestrians and obstacles on the mad Ultrasonic sensors na be used to measure the osition of objects very the information from all of the sensors is analysed ach as curbs and other by a central computer that whicles when parking nanipulates the steering, accelerator and brakes. Its software must understand Radar sensors monitor the position of other vehicles nearby. Such sensors are already used the rules of the road, both formal and informal in adaptive cruise-control system

than is possible with

close to the vehicle,

GPS alone -

Autonomous Driving System

SENSORS

	RADAR	Camera	LIDAR
Used for	 Detection - distance (range) and motion (velocity, angle) by radio waveforms 	 Recognition, classification by images 	 360° 3D view by laser / light
Applications	 Adaptive Cruise Control, Automatic Emergency Braking Systems, Blind Spot Detection, Parking Assistance 	 Traffic Sign Recognition, Land Keep Systems, Parking Assistance, Blind spot detection, ACC, AEBS 	 Emergency Brake Assist for Pedestrian, Crash Imminent Braking, Mapping
Advantages	 Working in all environmental conditions Light weight Longer detection distance than LIDAR 	 Lower cost Smaller sensor size High resolution Color recognition Imaging processing 	 High accuracy High resolution Intelligent signal processing with large amount of captured data
Limitations	 Limited information of detected obstacles Lower resolution than LIDAR 	 Various performance in some environments (e.g. weather, lighting) 	 (still) expensive sensor (still) big sensor size Expensive and complicated signal/data management Affected by weather

Automotive Radar

APPLICATION EXAMPLES

Auto Emergency Braking / Pretensioning Seatbelts

Blind Spot Monitoring

Lane Change Assist

Adaptive Cruise Control

Real Collision Protection

Stop & Go Cruise Control

5

Automotive Radar

MAJOR TECHNOLOGIES

- High Frequency and wide bandwidth millimeter wave (24, 77, and 79GHz)
- Modulation (FMCW)
- Antenna
- Automotive Ethernet / Serial Buses (BroadR-Reach, 100 BASE-T, CAN/CAN FD)
- Power Control (ETSI conformance specification, EN 302 264 for 79GHz)
- More

HIGH FREQUENCY & WIDE BANDWIDTH MILLIMETER WAVE (77/79 GHZ)

Benefits

- Better spatial angular (smaller wavelength), velocity (doppler), and range resolution
- Higher range (up to 300 meter)
- Smaller and lighter sensor
- Rapid signal attenuation (better for interference), improved interference mitigation
- Higher attenuation per km → higher spectrum reuse (sharing) scheme on the busy road
- Better power efficiency (less emission power → lower possibility of interference issue)

Source: CEPT Report 37

Fig.1 Comparison of sensor performance showing key parameters Angular resolution, Range resolution, Doppler resolution

HIGH FREQUENCY & WIDE BANDWIDTH MILLIMETER WAVE (77/79 GHZ)

Benefits

- Better spatial angular (smaller wavelength), velocity (doppler), and range resolution
- Higher range (up to 300 meter)
- Smaller and lighter sensor
- Rapid signal attenuation (better for interference), improved interference mitigation
- Better power efficiency (less emission power → lower possibility of interference issue)
- Higher attenuation per km → higher spectrum reuse (sharing) scheme on the busy road

Challenges

- Higher propagation loss
- Phase noise, IQ and frequency response errors
- degrade
- Repeatability
- More noise to impact on EVM
- Complex test set up
- Generate and characterize accurate wide bandwidth
- millimeter wave signals

MODULATION (FMCW)

Benefits

- Avoid high peak-to-average power ratio (PAPR) in transmission
- Simplifies the design process for antennas and RF components (narrow-band IF processing)
- Good performance with simplified RF components
 → small size, light weight, and low cost.
- Improved noise floor
- Interference tolerance
- Reduced RF intermodulation
- Simpler / easier waveform to generate (compared to very narrow, high power pulsed)
- Constant high average power, without requiring high peak powers, managed close-in blind-range issues (always transmitting and receiving)

Fig.4 FMCW diagram and frequency detection

MODULATION (FMCW)

Benefits

- Avoid high peak-to-average power ratio (PAPR) in transmission
- Simplifies the design process for antennas and RF components (narrow-band IF processing)
- Good performance with simplified RF components
 → small size, light weight, and low cost.
- Improved noise floor
- Interference tolerance
- Reduced RF intermodulation
- Simpler/easier waveform to generate (compared to very narrow, high power pulsed)
- Constant high average power, without requiring high peak powers, managed close-in blind-range issues (always transmitting and receiving)

- Challenges
 - FM Linearity modulation quality
 - Phase Noise and AM Noise of transmitter
 - RF leakage from Tx to Rx
 - Dealing with clutter from multiple undesirable reflections between sensor and targets
 - Dealing with interference from other radar sensor band users
 - Thermal Power Challenges

FM Error Peak (Hz) = max(Measured FM - LFM Best-fit)

10

Keysight Automotive Radar Solutions

OVER WHOLE DESIGN AND TEST LIFECYCLE

KEYSIGHT

From Design Simulation, Wide Bandwidth mmWave Signal Generation & Analysis, Precise Power and Component Measurements to Manufacturing Tests

🕐 (* 🔄 🍪 🖪 🖪 🖶 🕨 🖋

MUSIC AOA SIMULATION

MUSIC AoA

- Multiple Signal Classification, algorithm used for frequency estimation and emitter location
- High resolution digital beamforming method with sensor array is required
- Estimated by investigating the phase difference by a time delay

LINEAR FMCW MULTI-TARGET DETECTION

- Using single tone of linear FMCW signal with up-chirp and down-chirp with echo and beat frequency of every targets, users can simulate the multi target detection and show them in rangevelocity diagram.
- Showing three targets detected and shown in range-velocity diagram

13

MICRO-DOPPLER

- Using the micro-Doppler spectrum distribution to distinguish the targets from pedestrian or vehicle
- Pedestrian target has more sub parts like arm, leg, head, neck, and torso with different instantaneous velocity
- The arms and legs move periodically in walking; the Doppler spectrum is changing periodically in time
- A common scenario model with
 - Pre-defined walking passenger
 - Pre-defined running passenger
 - Pre-defined moving car
 - Custom scenario with customized trajectory
- 10+ scatters for a walking passenger
- Accurate modeling for moving trajectory for each scatter
- Reference radar data processing to identify micro-Doppler signature of the walking passenger

ankle

3D AUTOMOTIVE RADAR SCAN

- Needed target elevation angle information
 - Azimuth angle as well as range and velocity
- 3D Automotive radar scan
 - Leveraging 2D scan system, additional elevation region scan is needed
 - With MN planer array, the spaces can be divided into azimuth, elevation, and angle grids to realize and visualize 3D scan
- Designers can obtain the various simulation results in numeric, sliced 2D and 3D space distribution in SystemVue

Creating 3D scan scenarios with platform and target position, velocity, target RCS and more parameters, designers can visualize the results in various traces and distribution plots.

Automotive Radar Simulation

FLEXIBLE AUTOMOTIVE RADAR SIGNAL GENERATION WITH SYSTEMVUE

MILLIMETER WAVE TEST SET UP EXAMPLE

. 17

MILLIMETER WAVE TEST SET UP EXAMPLE

18

SIMULATION AND TEST RESULTS

- Two objects, 10 cm apart, FMCW, 1 GHz and 4 GHz modulation bandwidths
- Simulation result (left) and Measurement result (right)

Distance

FLEXIBLE AND COMPLEX MODULATION SIGNAL GENERATION

Key Features

- Download Radar FMCW signals from either: SystemVue, *IQ Tools, Signal Studio, or others*
- Generate ideal reference signals (replace Tx LO / VCO)
- Generate interferer, clutter, jamming test signals (Rx Test)

Parameters	E8740A-070 Performance SG
Frequency Range	DC to 25GHz, 60GHz to 90GHz
Signal Bandwidth for IF/RF	IF/RF up to 25GHz
3dB Bandwidth for mmW	5GHz for FMCW @ 79GHz Fc (with correction)
Pout1dB	-14.6dBm@76GHz -13.5dBm@79GHz
Amplitude flatness (at SMA connector,* compensated for sin(x)/x)	\pm 2 dB (typ), fout= DC to 10 GHz +2 dB, -3 dB (typ), fout = 10 to 25 GHz (typ
Amplitude resolution	200uV (nom)
DAC resolution	8Bit
AWG Sample rate	13.44 GSa/s to 65GSa/s
Sample Memory (Internal / extended)	1 MSa / 16GSa
Frequency Switching time	505us / 38ps (opt FSW)
MIMO and beam forming	Expandable to 16 synchronized channels
mmW Modulation signals	FM, PM, FMCW, pulse sequence, MFSK, custom OFDM,

20

BENEFITS OF HIGH-SPEED ARBITRARY WAVEFORM GENERATOR

High Speed AWG functionality	Benefit for Radar Testing
Extremely wide modulation bandwidth (e.g. DC to 32 GHz)	Discern targets that are close together Finer resolution of a given object
Instantaneous frequency hopping Overlapping pulses at different frequencies	Realistic simulation of multiple emitters that are transmitting simultaneously
Phase-coherent, multi-emitter, multi-channel pulse generation	Economical setup to for testing multi-channel radar receivers (e.g. DOA)
Repeatable phase from pulse-to-pulse and channel-to- channel, perfect frequency ramps	Repeatable test results
Flexible modulation formats	Develop new modulation schemes that are more tolerant to interference
No images or carrier feedthrough . Flat magnitude- and phase response (after calibration)	Testing your device and not the instrument!

OVERLAPPING PULSES AT DIFFERENT FREQUENCIES

22

KEYSIGHT TECHNOLOGIES

FLEXIBLE MODULATION FOR MATS

 Any mathematical expression can be used to describe the modulation on the pulse including CW, FMCW, LFM chirp, Barker, non-linear chirp, user-defined frequency- and phase modulation

INDUSTRY'S MOST POWERFUL AUTOMOTIVE RADAR SIGNAL ANALYSIS

E8740A-060 Performance SA

Key Features

With N9041B UXA

- Continuous Freq sweep 3Hz~ 110GHz
- 5GHz BW (with external oscilloscope)
- Up to 1GHz internal BW with adding opt H1G
- -150dBm/Hz DANL up to 110 GHz
- Dual input rugged 2.4mm and 1mm connector
- 50M RBW with adding opt H1G and opt RBE
- RF Power, Harmonic and spurious, Spectrum Emissions, OBW, Frequency Stability
- Phase Noise with N9068C
- Noise Figure with N9069C and opt P50 at input port 1 (up to 50GHz)

With DSOS804A Scope and VSA s/w

- 10 Bit ADC up to 8GHz bandwidth with minimum resolution : 0.781 mV) 4x better resolution than RTO 8 bit ADC
- Analog/Digital I/Q input

Key Measurements

- RF Power
- Spectrum Emissions
- Phase Noise
- Frequency Stability
- Modulation Quality

EFFECT OF SOFTWARE PRE-SELECTOR

FMCW spectrum without software pre-selector

Observed FMCW signal and spectrum with software pre-selector ON

FLEXIBLE FMCW SIGNAL ANALYSIS IN SPECTRUM & TIME DOMAINS

89600 VSA Key Features:

- Automatically synchronize to FMCW radar signals comprised of multi-chirp linear FM modulation patterns.
- Synchronized
 Amplitude & Phase
- Synchronized
 Frequency (FM) Modulation
- FMCW Region Tabular metrics
 - Power and Time
 - Best-Fit FM
 - Phase Error
 - FM Error
 - FM Slope Error

Automotive Radar Manufacturing

SOLUTION

HIGH FREQUENCY & WIDE BANDWIDTH MILLIMETER WAVE (77/79 GHZ)

- How we understand the market today:
 - Automotive radar is fast evolving, while the short-range-radars (SRR) are evolving from 24GHz to 79GHz, there is also the long-range-radars (LRR) at 77GHz
 - Some are not yet invested in 79GHz and have a huge 24GHz capacity, some are just getting into 24GHz
 - Those investing into 77GHz LRR, are looking to maximize capital expenditure to 79GHz SRR
 - But 77GHz required < 1GHz of bandwidth, and 79GHz is demanding for 4GHz bandwidth
 - SRR required a lower simulated distance, as low as the RTS can go
 - As we discussed with more manufacturing customers, it is apparent that more are leaning towards an analog method of testing
 - Regulatory requirements (eg. European Standards Organization (ETSI), and Federal Communications Commission (FCC)) defining bandwidth, power levels, interference testing methods
 - For bandwidth a full 4GHz sweep is expected vs interpolation
 - Analog method was more direct in revealing DUT failures

BASICS

Below, is a representation of a Radar unit functionality

Now we replace the car with a Radar Target Simulator

1 meter min. physical distance

Basic Functionality

- 1) Radar DUT signal is received
- 2) Signal is manipulated in the Radar Target Simulator
- 3) Signal is then re-transmitted back to the Radar DUT

Radar Target Simulator will apply	to simulate
Time delay	Range (Distance)
Doppler Frequency Shift	Radial Velocity (Speed)
Attenuation	Radar Cross Section (Object Size)

RADAR TARGET SIMULATOR (RTS) BENEFITS

E8708A Radar Target Simulator

- Wide simulated range coverage with *minimum distance starting from 4m*
- 4GHz Bandwidth support wide range of module without the need of changing center frequency
- Scalable for both Manufacturing and Verification test
 - Basic Fixed range simulation (eg. 75m & 150m)
 - Comprehensive Full range, RCS, Doppler & DUT Transmit Power
- Reliable, accurate and repeatable performance
- Ease of use GUI and API where all parameters controllable in C++ & C# programming environment
- > Designed, manufactured and *supported by Keysight Technologies*
- World wide support, calibration and warranty
 - Default 1 years factory warranty, optional 3 and 5 year warranty
 - Optional upgrade with on-site calibration and support packages
- CE and Safety certified

Key Product Specifications

Performance	Specifications						
Frequency Range	76 – 81 GHz						
Instantaneous Bandwidth	4 GHz						
Min. target distance	4 m (1m physical + 3m simulated)						
Max. target distance	300 m						
Distance step	0.1m						
Doppler shift range	+/- 360km/h with 0.1km/h resolution						
Transmit/Receive Gain Control	61.5 dB with 0.5 dB step						
4m 300m	-32dBsm to 30dBsm (typical) 43dBsm to 105dBsm (typical)						
Spurious	-35dBc						
Phase Noise	-90dBc/Hz @ 10kHz						
Max. Input Power	-13 dBm at RF In Flange						
Recommended Input Power	-20dBm at RF In Flange						
Min. Input Power	-65dBm at RF In Flange						
Max. target distance	300 m						
RF In to 'IF OUT 1' Conversion Loss	-5dB (typical)						
RF IN to 'IF OUT TO SA' Conversion Loss	+5dB (typical)						

Keysight E8708A Radar Target Simulator

IMPROVEMENTS OF NEW SYSTEM

- New option! Built-in signal analyzer for Occupied Bandwidth Measurement and Power Measurement
 - No need for external Signal Analyzer outside, only if customers need in-depth analysis of their DUT radar signal
- Doppler simulation included
 - No need for external Signal Generator

IN-BUILT RF POWER MEASUREMENT (PRE-LIM)

- Built-in signal analyzer for Occupied Bandwidth Measurement and Power Measurement
 - Below is a comparison between Keysight's N9000B CXA and the analyzer built into the RTS

Test Conditions

Test Signal Type : Linear FM Chirp 1GHz Power Level : 0 dBm Signal Source : Keysight ESG E4438C

: 100 kHz

: 100 kHz

RBW VBW

IN-BUILT RF POWER MEASUREMENT (PRE-LIM)

- Built-in signal analyzer for Occupied Bandwidth Measurement and Power Measurement
 - Below is a comparison between Keysight's N9000B CXA and the analyzer built into the RTS

Test Conditions

Test Signal Type : CW 1 GHz Power Level : 0 dBm Signal Source : Keysight ESG E4438C

SPAN

RBW

VBW

: 2 MHz

: 30 kHz

: 30 kHz

RADAR TARGET SIMULATOR (RTS) SETUP OVERVIEW

- Minimum physical distance of 1m, minimizing space requirements
- The RTS works standalone, or can be connected remotely via LAN for control or monitoring

Value Added Service

Keysight Calibration services, can automate your chamber calibration, with measurement uncertainty report within an hour!

USER INTERFACE AND SOFTWARE CONTROL

TECHNOLOGIES

Manufacturing Environment LAN 1 LAN 2 via LAN ___ direct peripheral *1000704,865 hotor.com and south a closed to a first out of the local state. Address in the solution of and the second second And the relationship the statistic solution of the state of the state of the solution of the soluti 10.4.7 te das transforments ALC-WAY REAL AND A DO widt landler: Colect handle In alter her and the process of and report and and the second second Programming rt mode +0 is reacing. Int m Interface. To adding over density TO COMPLETE AN OWNER Guide milered. - assessments Filtered levels - Level are 10. Valley MILCond Cold, DML Cold Playte ark prests de stele konst Health and a strength of the first all the Setting of deviced bridge to offer as 12000 where the state of Apple for the Property of Cale Software API supporting C++ & C# environment

Keysight E8708A Radar Target Simulator

PRODUCT OPTIONS - 76 GHZ TO 81 GHZ VERSION

Desc	cription			Rang	e Options		+ D	oppler		+ DUT Tx Power & Occupied BW Measurement						
Perfo Fea	ormance atures	 E8708A-D01 Full Delay Module (4m to 300m) E8708A-D02 2 Fixed Ranges* E8708A-D03 3 Fixed Ranges* E8708A-D04 4 Fixed Ranges* * Fixed ranges are customer defined 						+/- 360 km/h re: Built-In	km/h wit solution	h 0.1	 Enable DUT Tx power measurement (EIRP) OBW measurement Built-In 					
Addition Op	nal Features otions	 Single or Dual Horn Antenna, 25dBi standard (optional 20dBi antenna available) Positioning Laser 														
Support	& Warranty	 1 Ye Opti 0 	ars Keysig onal 1, 3 Return	ght Factor & 5 years to Keysig	ry warranty wit s contract ht and onsite c	h calibration c alibration	ertifica	te valid fo	or 1 year							
	s															
					Monday with the											
							-	_				+				
						94) Š 94) Š	a last									
	•				•1	2.	1115			2		*			2	
							1					1	2			
			2 A			ΤĀ										

Automotive Radar Design and Test Lifecycle

SUMMARY

- Advanced automotive radar with millimeter frequency and wide bandwidth are now an indispensable part of Advanced Driver Assistance Systems (ADAS) and autonomous driving vehicles
- Growing demand of advanced technologies, such as 79GHz frequency with 4GHz modulation bandwidth and micro-Doppler to detect and protect pedestrians, has led to new design and test challenges
- Keysight Automotive Radar solutions from early design simulation through Research & Development (R&D) and manufacturing to solve current and future automotive radar design and test challenges

Keysight Solutions

R&D SOLUTIONS FOR AUTOMOTIVE RADAR DESIGN AND ANALYSIS

Ready-to-use RF measurements

89600 VSA software Comprehensive demodulation & vector signal analysis

FMCW Radar Analysis Assistant

E8742A-001 Easy U/I for Downconverter set up and FMCW analysis (VSA utility)

creation **FMCW Radar Generation Assistant** E8742A-002 Easy U/I for Upconverter set up, FMCW/FCM signal creation and wideband calibration (IQTools utility)

measurements Signal Studio

N7608C Pulse/FCM/FMCW/MFSK signal

Keysight Solutions

ADDRESSING DESIGN AND MANUFACTURING FOR AUTOMOTIVE RADARS

Automotive Radar Design and Test Lifecycle

FOR MORE INFORMATION

- Keysight Automotive & Energy website: www.keysigth.com/find/automotive
- Next Keysight Automotive Webinar Series
 - Automotive Ethernet Applications and Test Challenges
 - To Register: https://event.on24.com/wcc/r/1636543/5B1139C469759A34147F104DC4B66707

KEYSIGHT TECHNOLOGIES

Thank you!