

Get Ready for the Gen5 Wave with PCle Technologies

Francis Liu

Sr. Project Manager / Keysight Technologies

Agenda

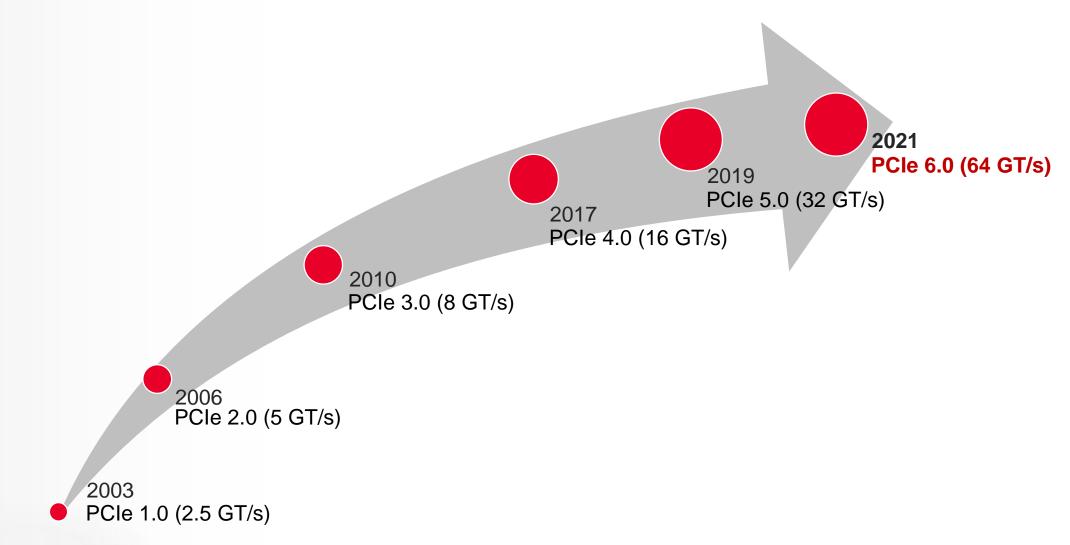
PCIe 5.0 Development Timeline

• PCIe 5.0 and High Speed IO Standards

PCIe 5.0 Rx Test Calibration Considerations

• VNA vs Step Response - Determining ISI channel loss

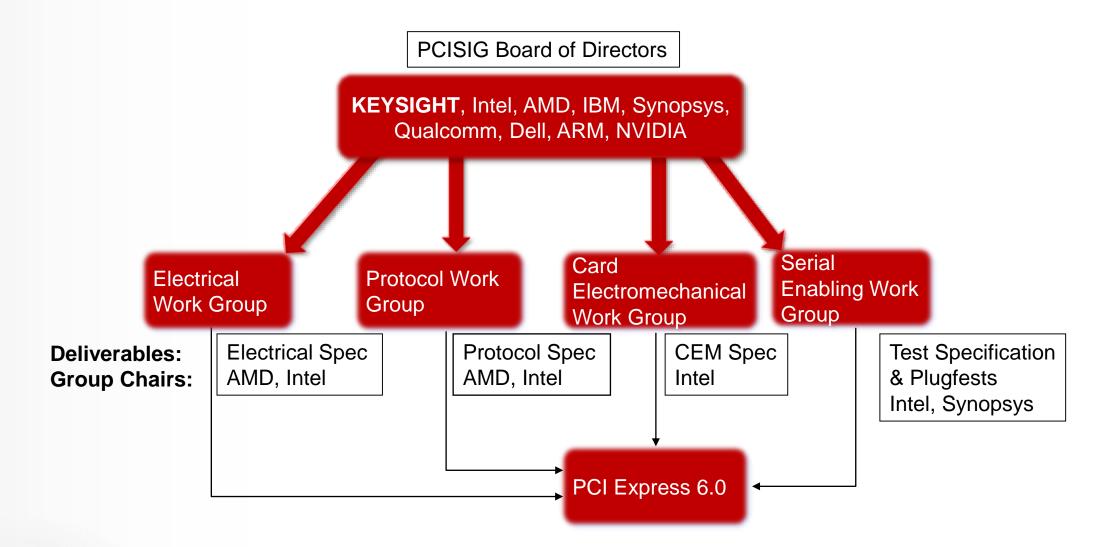
PCIe 5.0 TX Test Consideration & Tools


- Base & CEM Scope Considerations
- PCIe 4.0 CEM Dual Port Testing
- PCIe 6.0 64GT/s Pathfinding
 - PCIe 5.0 to 6.0: From NRZ to PAM4

PCle 5.0 Development Timeline

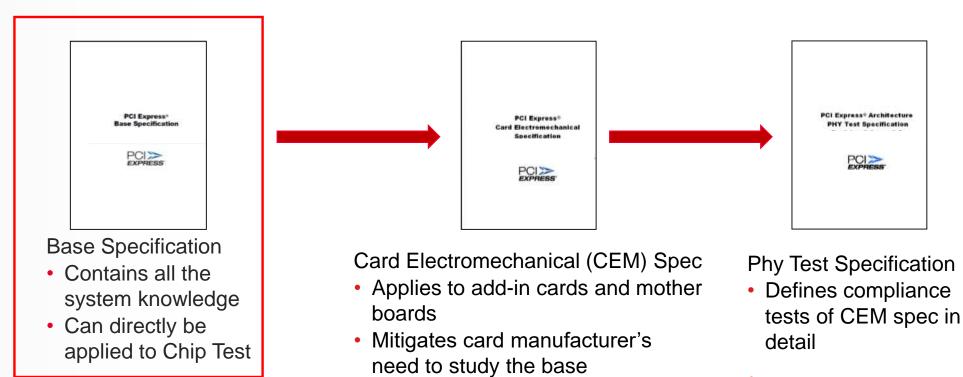
PCIe 5.0 and High Speed IO Standards

PCI Express Technology Roadmap


Computer I/O Innovations in Bus Technologies

PCIE, CCIX, GENZ, OPENCAPI

Standard	Physical Layer	Topology	Unidirectional BW	Mechanicals	Coherence
PCIe 6.0	PCIe Phy PAM4	p2p switched	64 Gb/s x16	PCle	No
PCIe 5.0	PCIe Phy NRZ	p2p switched	32 Gb/s x16	PCle	No
PCIe 4.0	PCIe Phy NRZ	p2p switched	16 Gb/s x16	PCIe	No
GenZ 1.0	IEEE 802.3 PCIe Phy	p2p switched & meshed	16/25/56 Gb/s per lane x256	SFF-TA	Full cache coherence
OpenCAPI 3.0	IEEE 802.3	p2p	25 Gb/s per lane x8	-	Coherent to system memory
CXL 1.1	PCIe 5.0	"all-to-all"	32 Gb/s x16	PCIe	Coherency between CPU and attachments


PCI Express Standards Development

PCI Express Specifications and Scope

SELECT THE SPECIFICATIONS FOR YOUR SPECIFIC NEED

Increases reproducibility through

PCI-SIG supplied test tools CBB and CLB (compliance base and

specification

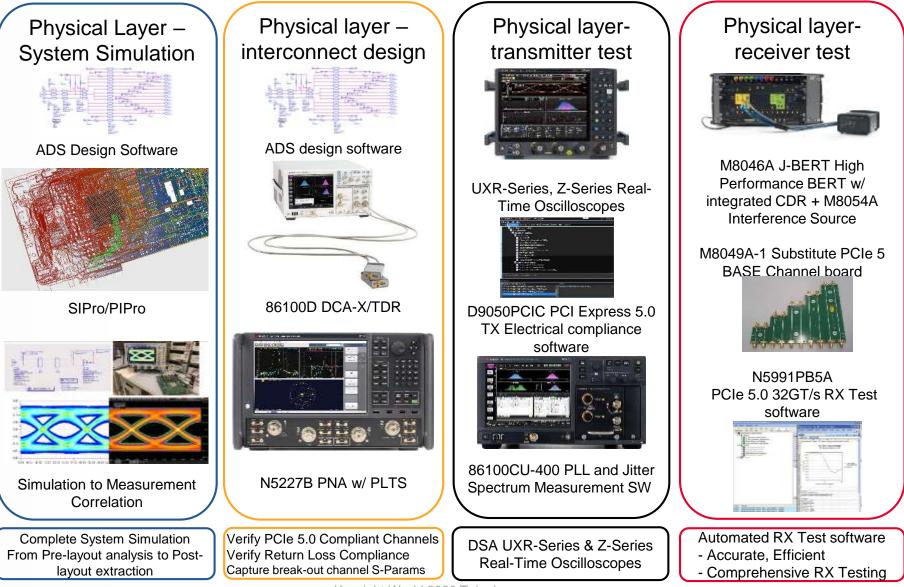
load board)

Latest

PCIe_5_0_PHY_Test_Spec_Ver0.5 Released Ver0.5 in June 2019

KEYSIGH1

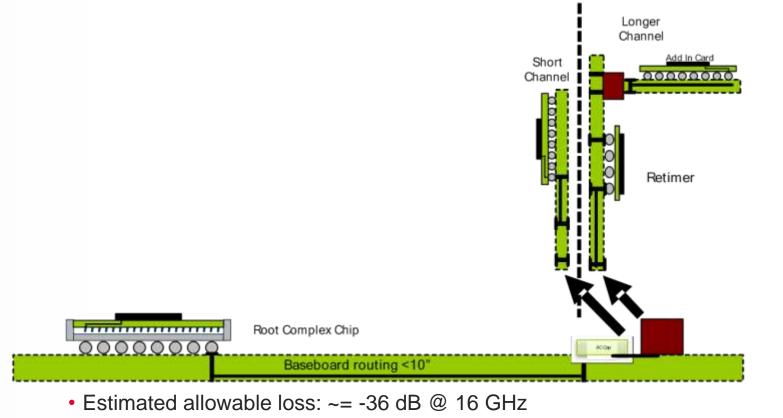
PCIe_CEM_SPEC_R5_V0.7. Released Ver0.7 in June 2019


PCIe 5.0 – Goals

DELIVERING THE FASTEST PCIE SPEED YET

- PCIe 5.0 is backwards compatible with prior generations
 - Enhanced SMT connector
 - Same pinout
- Signaling is doubled (vGen4) to 32 GT/s
 - Minimal spec changes only ones needed to enable speed bump
 - EIEOS changed to maintain frequency
 - Encoding remains 128/130
 - Loss budget: Goal 35-36 dB
 - Equalization: 8 GT->16 GT-> 32 GT/s
 - > 2x Tx jitter reduction
 - ~3x Reference Clock jitter reduction
 - Improved 32 GT/s Reference CTLE equalization, 3 tap DFE
 - BER target is 10e-12
- Same approach for TX and RX testing used for Gen4
 - Similar method for TX testing via de-embedding of breakout board traces
 - Similar method for calibrating the eye width and eye height as used with PCIe 4.0 (ISI based, fixed RJ)

PCI Express® 5.0 – Keysight Total Solution

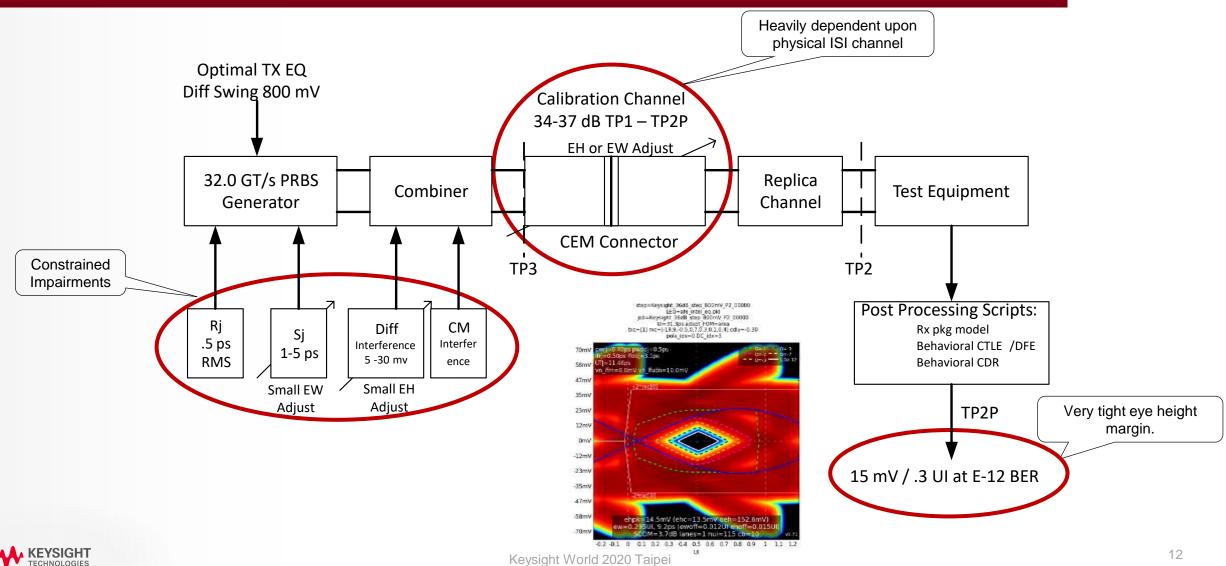


PCIe 5.0 Rx Test Calibration Considerations

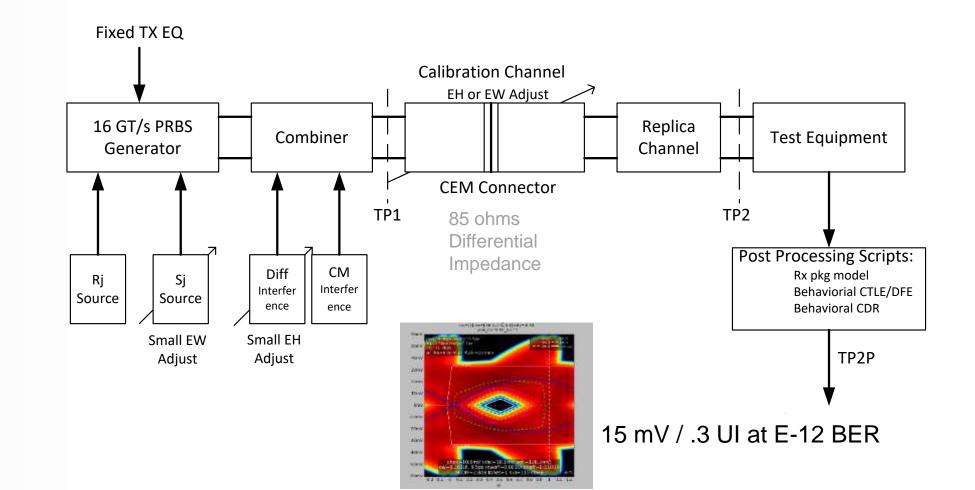
VNA vs Step Response - Determining ISI channel loss

PCI Express 5.0 Channel Topology

RETIMER REQUIRED WHEN LOSS EXCEEDS -36 DB OR >1 CONNECTOR



- Root complex pkg loss allowance ~= -9 dB @ 16 GHz
- Add-in Card pkg loss allowance ~= -4 dB @ 16 GHz
- Total AIC loss budget estimate = ~9 dB @ 16 GHz
- PCIe 5.0 CEM Connector loss budget ~= 1.5 dB @ 16 GHz


PCIe 5.0 32 GT/s RX Calibration (BASE)

15 MV EYE HEIGHT POST EQ (0.3UI EYE WIDTH) TARGET

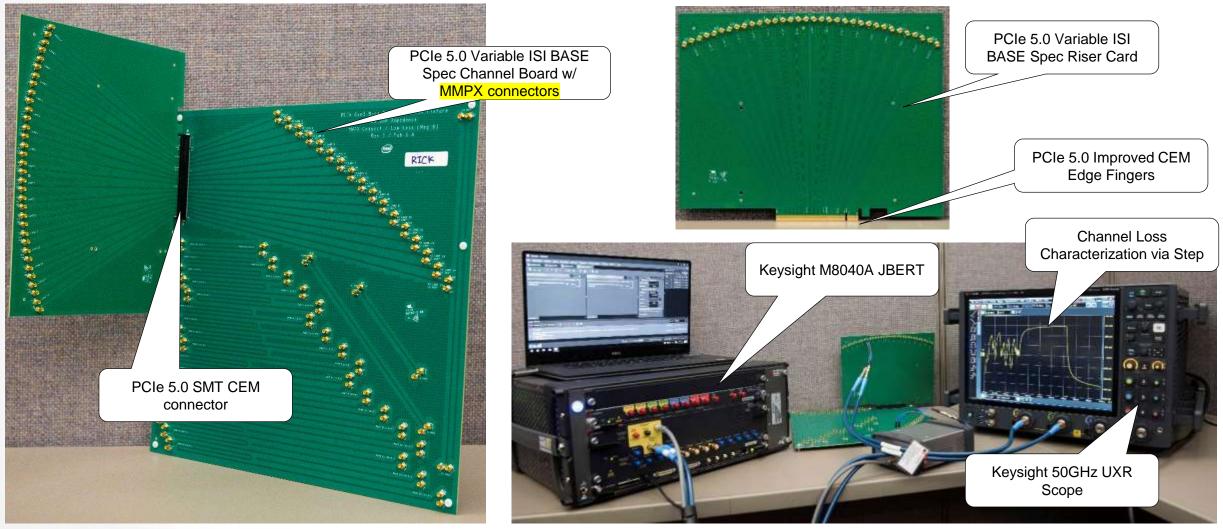
PCIe 4.0 16 GT/s RX Calibration (BASE)

15MV EYE HEIGHT POST EQ (0.3UI EYE WIDTH) TARGET

Gen4 and Gen5 BERT Calibration

DIFFERENCES

- PCI Express Channel Definition (for Calibration)
 - PCIe 4.0 includes BERT cable as part of the Rx calibration channel
 - PCIe 5.0 does not include extra cable connecting BERT to channel
 - M8040A has reference plane at the remote head+dedicated cable
- Steps for Closing Calibration
 - PCle 4
 - PCIe 4 uses nominal stress values for SJ and DMSI (RJ is fixed)
 - PCIe 4 Objective: Find highest channel loss where EH & EW meet min Rx requirements
 - PCle 5
 - Sweep SJ and DMSI through allowed ranges for a given amount of channel loss
 - Find the highest loss ISI channel pair where you can close the calibration while sweeping SJ and DMSI through the allowed ranges
- Calibration Assumptions
 - SJ allowances can help to adjust EW
 - DSMI allowances can help to adjust EH
 - In practice SJ changes EW and EH, and DMSI can change both EW & EH as well.



VNA vs Step Response

Determining ISI channel loss

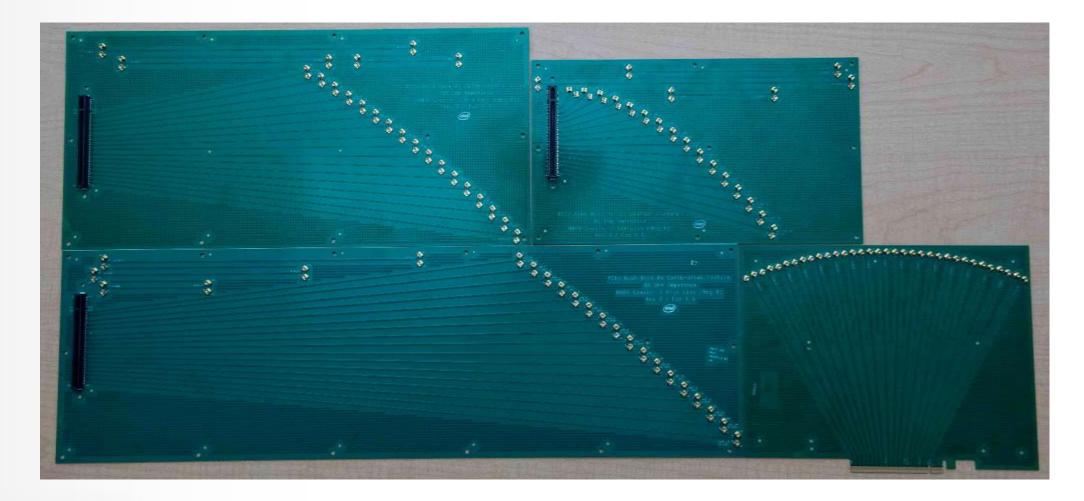
PCIe 5.0 32 GT/s RX Calibration (BASE) Example

TARGET TEST CHANNEL BOARD W/ NEW CEM SMT CONNECTOR

VNA based Calibration

PCIE 4.0 CEM CLB/CBB SPREADSHEET

Gen4 Test Fixture Characteriza	CION		
		All cells with a bold outline must be filled in	
Insertion Loss Per Inch		Notes	ypical Valu
Short Trace	2 1	Motes Measured differential insertion loss (IL) on the CBB (J97/J99 <-> J96/J98) with SMA/SMP adaptors	1.110
Long Trace		Measured L on the CBB (J74/J1<-> J73/J2) with SMA/SMP adaptors	12.060
Long Trace	0	(Long Trace IL – Short Trace IL) / 10	1.095
Eossimen		(Long Hadelic - Shok Hadelic) no	1.033
Coaxial Launch Loss			
SMA Female to SMP Female Cable		Adaptor cable loss can be measured, or obtained from data sheet	0.223
Coaxial Launch 2x	0	Long Trace Loss - 10" of loss/inch - loss of two adaptors = Loss of 2 coaxial launches	0.041
Mated CEM Connector Loss			
CBB Tx<-> CLB Rx	2 1	Measurement of CBB Tx Lane 0 with CLB Rx Lane 0 (CLB mated in CEM connector of CBB)	9,760
Mated CEM Connector Loss	0	Measurement or CDD TX Lane U with CLD HX Lane U (CLD mated in CCM connector or CDD) Mated CEM Connector Loss = CBB & CLB Loss - SMA to SMP adaptor loss - trace loss - coaxial laur	
Mated UEM Connector Loss	,U,	Mated LEM Connector Loss = CDD & CLD Loss - DMA to DMP adaptor loss - trace loss - coaxial laur	1 1.603
CBB Tx Loss	0	CBB Tx Loss = Mated CEM Connector Loss + trace loss + coaxial launch	4.915
CLB Tx Loss	0	CLB Tx Loss = trace loss + coaxial launch	2.210
System Rx CAL		See "System Rx Calibration Diagrams" tab for measurement setups	
CBB ISI (Target)	15	Target loss for variable ISI board plus cables (SMP & SMA) on the CBB side	10.085
CBB ISI (Measured)	13	Variable ISI with cable measurement. Find variable ISI pair which gets the closest to "CBB ISI (Target)	
CBB ISI Pair	S	Identify the final variable ISI pair	Pair 16
27dB Channel (22 dB Measured)	a - 8	Full channel channel measurement. Find variable ISI pair which gives a full channel measurement of	
27dB CLB ISI Pair	2	Identify the final variable ISI pair	22.070 Pair 0
28dB Channel (23 dB Measured)	e	Full channel channel measurement. Find variable ISI pair which gives a full channel measurement of	
28dB CLB ISI Pair		Identify the final variable ISI pair	23.020 Pair 2
30dB Channel (25 dB Measured)		Full channel channel measurement. Find variable ISI pair which gives a full channel measurement of	
30dB CLB ISI Pair	2	Identify the final variable ISI pair	24.330 Pair 6
SOUD CEDISIPAI		identity the final variable to pair	Fall U
AIC Bs CAL		See "AIC Rx Calibration Diagrams" tab for measurement setups	
CLB ISI (Target)	5	Target loss for variable ISI board plus cables (SMP & SMA) on the CLB side	2.790
CLB ISI (Measured)	S	Variable ISI with cable measurement. Find variable ISI pair which gets the closest to "CLB ISI (Target)"	
CLB ISI Pair		Identify the final variable ISI pair	Pair 0
27dB Channel (24 dB Measured)		Full channel channel measurement. Find variable ISI pair which gives a full channel measurement of	
27dB CLB ISI Pair	s- 12	Identify the final variable ISI pair	Pair 23
28dB Channel (25 dB Measured)		Full channel channel measurement. Find variable ISI pair which gives a full channel measurement of	
28dB CLB ISI Pair		Identify the final variable ISI pair	Pair 25
30dB Channel (27 dB Measured)		Full channel channel measurement. Find variable ISI pair which gives a full channel measurement of	
30dB CLB ISI Pair		Identify the final variable ISI pair	Pair 30
AIC Tx		See "AIC Tx Diagrams" tab for measurement setups	
CBB ISI (Target)	15	Target loss for variable ISI board plus cables (SMP & SMA) on the CBB side	10.085
CBB ISI (Measured)		Variable ISI with cable measurement. Find variable ISI pair which gets the closest to "CBB ISI (Target)	10.390
CBB ISI Pair		Identify the final variable ISI pair	Pair 16
		See "System Tx Diagrams" tab for measurement setups	
Suctom Tv		ore operation in programs rabitor measurement serups	
System Tx CLBISI(Target)	5	Target loss for variable ISI board plus cables (SMP & SMA) on the CLB side	2 790
System Tx CLBISI (Target) CLBISI (Measured)	5	Target loss for variable ISI board plus cables (SMP & SMA) on the CLB side Variable ISI with cable measurement. Find variable ISI pair which gets the closest to "CLB ISI (Target)"	2.790 2.560



Four-port VNA for Channel Analysis

PCIe 5.0 ISI Channel

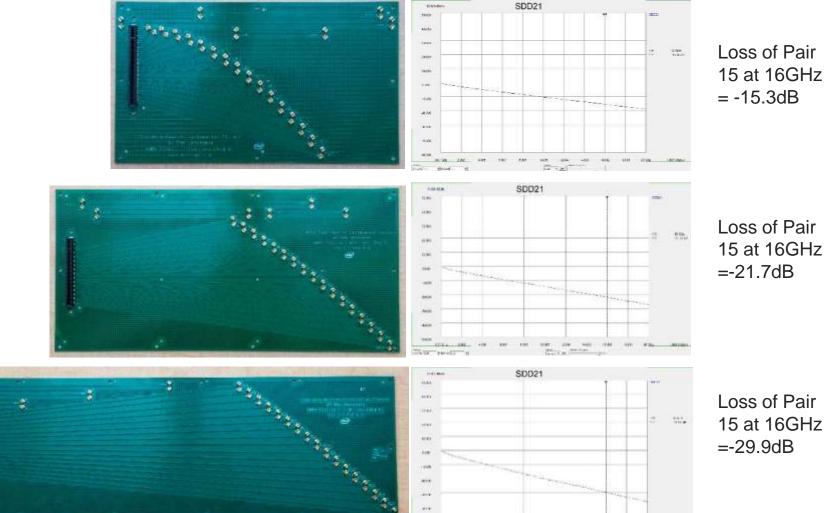
VERSION 3.0

Cables Provided in PCIe 5.0 BASE Fixture Kit

HUBER+SUHNER CABLES

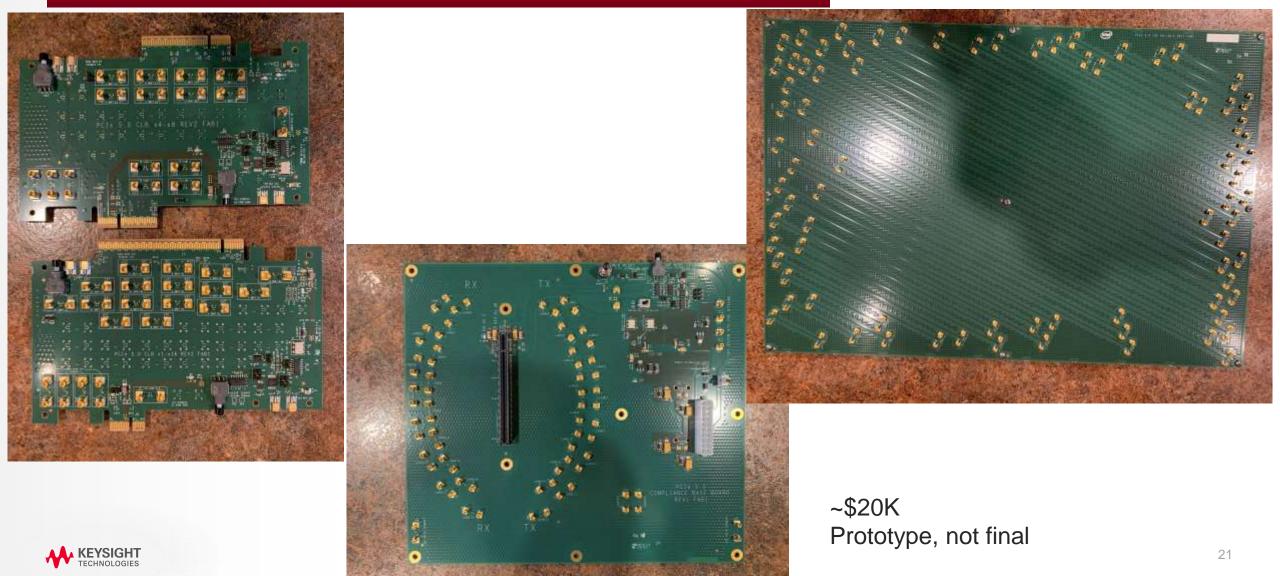
PCISIG Supplied

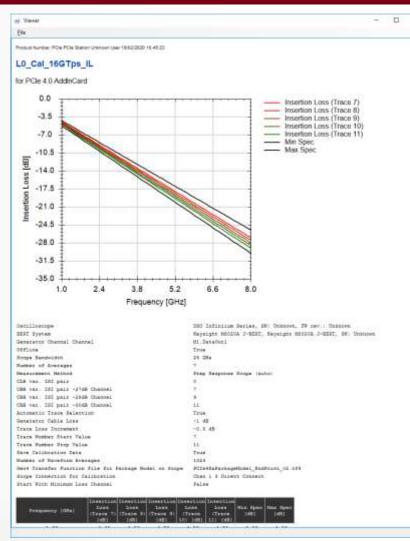
Suggested MMPX Accessories (not PCISIG Supplied)


H+S #84071648 2.92mm(F) to MMPX (M)

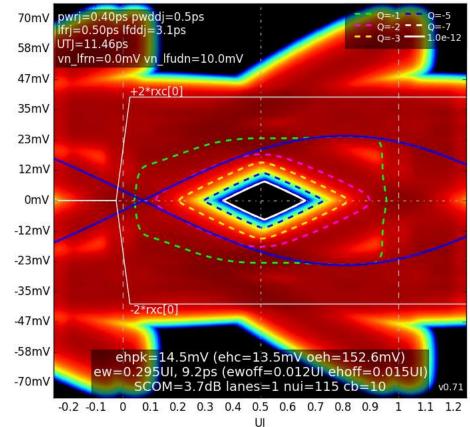
H+S #84071696 2.92mm(M) to MMPX (F)

PCIe 5.0 BASE ISI Channel


MAXIMUM CHANNEL LOSS PAIRS


PCIe 5.0 CEM Fixture, Prototype

CLB, CBB AND ISI BOARD



Choosing the Right ISI Pair

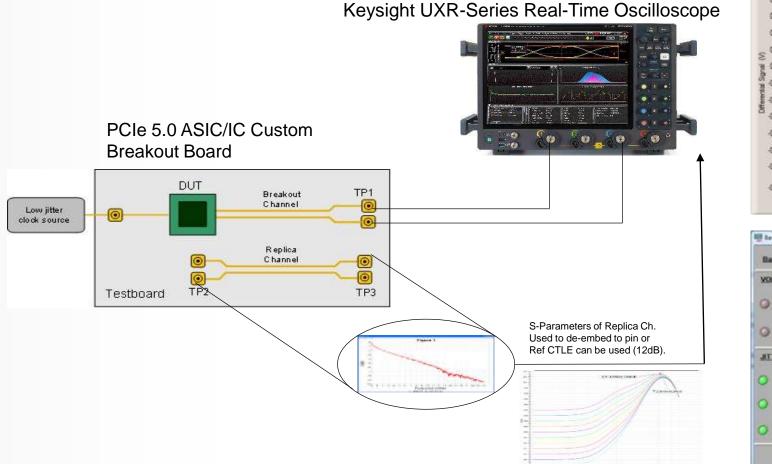
PCIE 5: PICK THE MAXIMUM LOSS CHANNEL

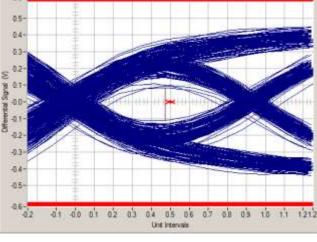
step=Keysight_36dB_step_800mV_P2_00000 LEQ=afe_intel_eq.pkl job=Keysight_36dB_step_800mV_P2_00000 UI=31.3ps adapt_FOM=area txc=[1] rxc=[-19.9,-0.5,0.7,0.3,0.1,0.4] cdly=-0.30 pole_idx=0 DC_idx=3

Choosing the right ISI Pair

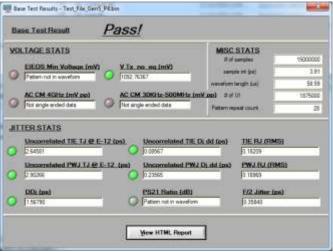
STEP RESPONSE SUPPORTED PCIE 4 AND PCIE 5

PCIe N5991 ValiFrame			- 0 X	Connection Setup for Insertion Loss Calibration	- u x
NEW LOAD SAVE EXPORT RESET START PAUSE ABORT Image: Start Start PAUSE SABORT RESET START PAUSE ABORT Image: Start Start PAUSE Start PAUSE ABORT Image: Start Start PAUSE Start ABORT Image: Start Start PAUSE Calibration Image: Start Start PAUSE Calibration Image: Pause Start PAUSE Pause Start Image: Pause Start Pause Start Pause Start Image: Pause Start Pause Start Pause Start Image: Pause Start Pause Start PauseStart Image: Pause St	 16G Insertion Loss Calibration Offline Measurement Method Automatic Trace Selection Generator Cable Loss Trace Number Start Value Trace Number Stop Value Save Calibration Data Oscilloscope Scope Bandwidth Number of Averages Variable Stape Calibration Procedure Error Case Behavior Procedure Failed Case Behavior Procedure Failed Case Behavior Repetitions Variable ISI pairs CLB var. ISI pair CBB var. ISI pair - 27dB Channel CBB var. ISI pair - 27dB Channel CBB var. ISI pair - 30dB Channel 	True Step Response Scope (auto) True -1 dB -0.5 dB 7 11 True 25 GHz 7 1024 Abort Sequence Proceed With Next Procedure 0 0 7 9 11	ABOUT		
B → □ ♥ 165 DMSI Calibration B → □ ♥ 165 CMSI Calibration				Keysight Recommends the VNA	Approach
B→□ ♥ 16G Initial Equalization Preset Optimization B→□ ♥ 16G Channel Calibration	Measurement Method			For calculating ISI channel loss.	
Severity Message #P Progress 16G Insertion Loss Calibration: Step 2 - Acquiring step response for IL trace 9 Info IL at 8GHz :-28d8 #P Progress 16G Insertion Loss Calibration: Step 3 - Acquiring step response for IL trace 10 Info IL at 8GHz :-29d8 #P progress 16G Insertion Loss Calibration: Step 4 - Acquiring step response for IL trace 11 Info IL at 8GHz :-30d8 Info Test result saved to C:\ProgramData\BitfEye\N5991\Tmp\Results\PCle Station	n\16G_Insertion_Loss_Calibration_PCle		Date 02/19/2020 10:43:50 02/19/2020 10:43:50 02/19/2020 10:43:50 02/19/2020 10:43:50 02/19/2020 10:43:50 02/19/2020 10:43:50 02/19/2020 10:43:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 02/19/2020 10:44:50 V		

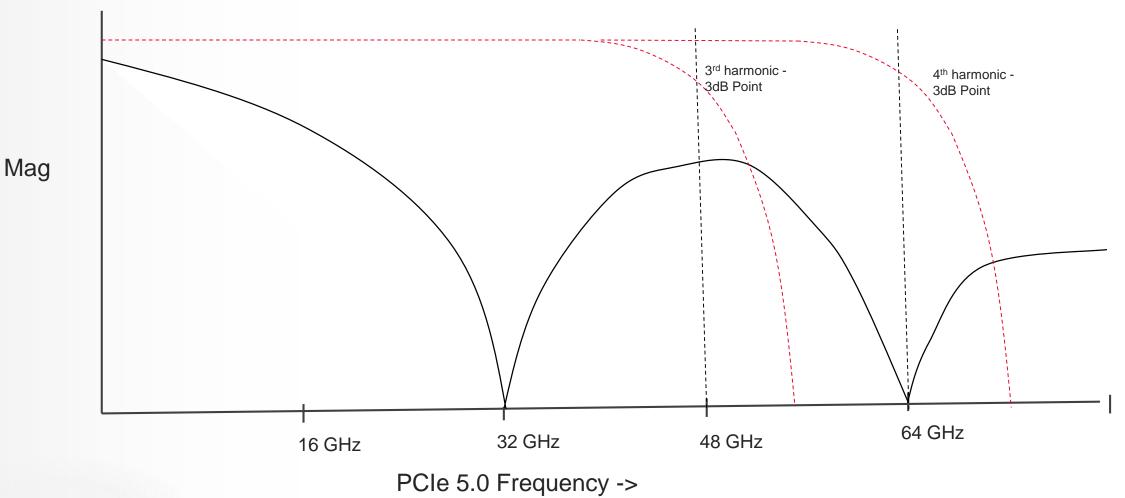



PCle 5.0 TX Test Consideration & Tools

Base & CEM Scope Considerations

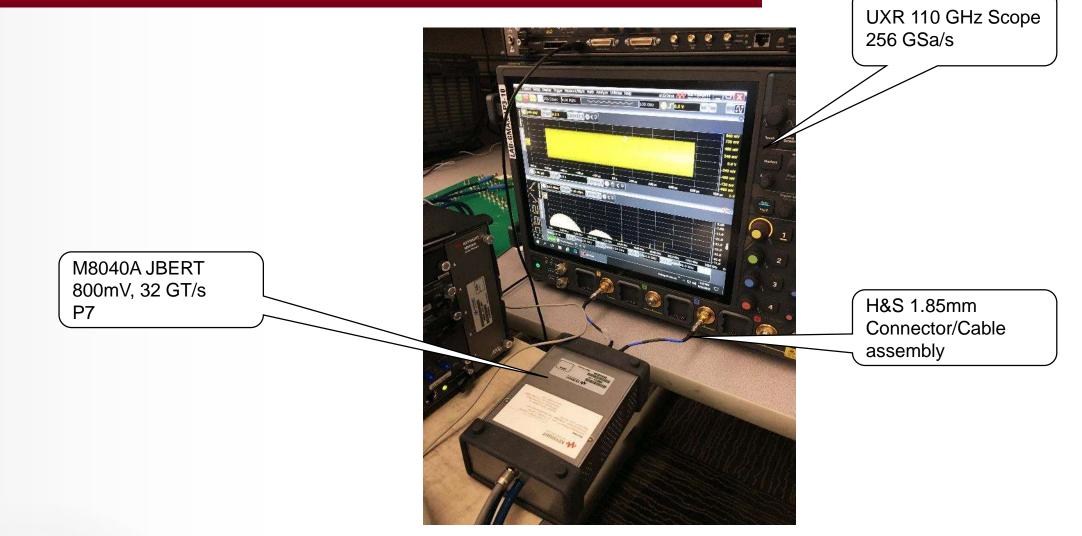

PCIe 5.0 32 GT/s Tx Testing

BREAK OUT CHANNEL FOR ASIC REQUIRED


0.5-

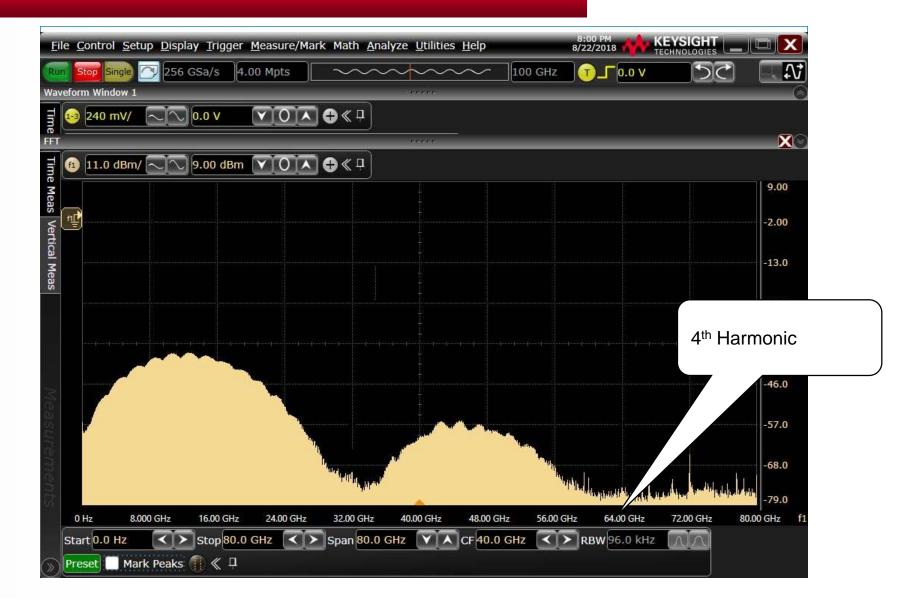
PCIe 5.0 Overview

PCI EXPRESS 5.0 HARMONICS



Keysight World 2020 Taipei

PCI Express 5.0 Spectral View


MEASUREMENT SETUP

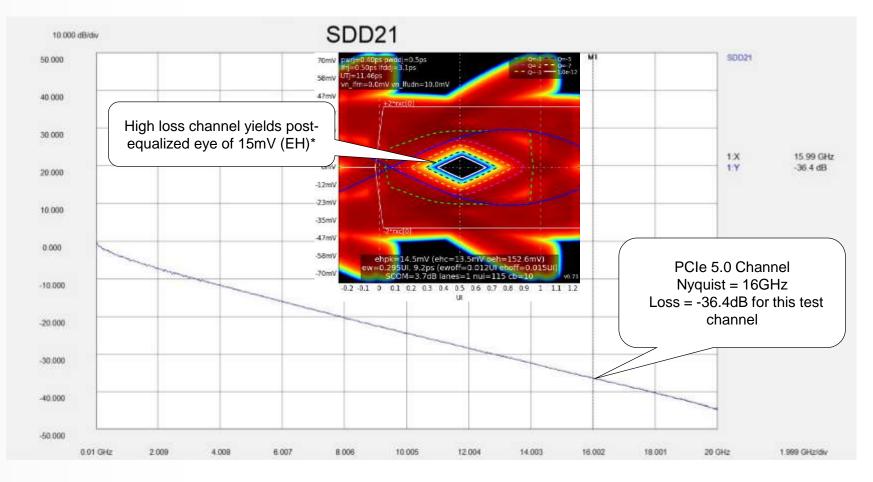
PCI Express 5.0 Spectral View

80 GHZ VIEW

Keysight D9050PCIC PCIe 5 (Gen5) Tx Test Application

5.0 BASE SPEC TESTS

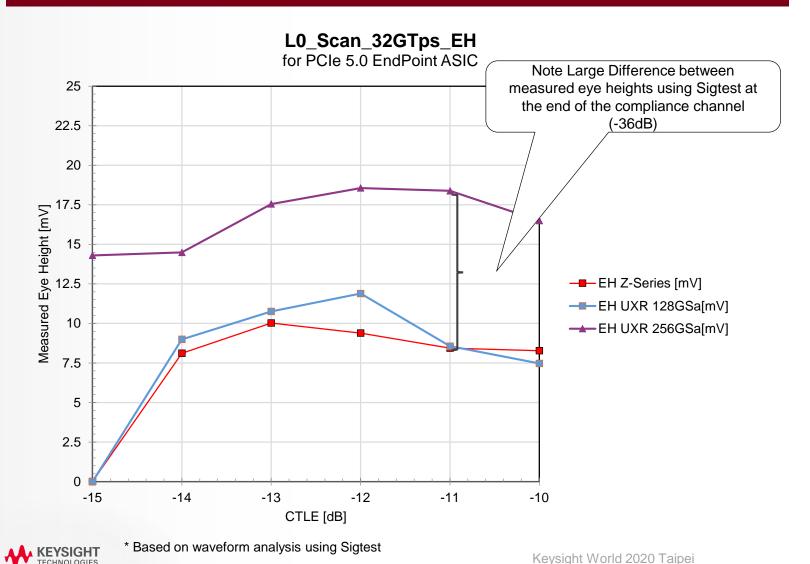
PCI-Express Gen5 Test Application New Device1	
<u>File View Tools Help</u>	
Set Up Select Tests Configure Connect Run Automate Results HTML Report	
 All PCI Express Gen 5 Tests 32.0 GT/s Tests Transmitter (Tx) Tests Signal Quality Unit Interval Full swing Tx voltage with no TxEQ Full swing Tx voltage with no TxEQ Uncorrelated total jitter PCIe 5.0 BASE Uncorrelated deterministic jitter Spec Tests Deterministic DjDD uncorrelated PWJ Pseudo package loss O Data dependent jitter 	Test Report
✓ Random jitter ✓ Min swing during EIEOS for full swing	Test Configuration Details
o ✓ Common Mode Voltage	Device Description
Tx, DC common mode voltage	ChannelR-1
→ ✓ Tx, AC common mode voltage	ChannelR-3
➤ ✓ Tx, Absolute delta of DC common mode voltage Data Channel - Device Name	New Device1
(Click a test's name to see its description)	Test Session Details
Infiniium SW Vers	on 06.30.00701
Messages Infiniium Model Nu	mber DSAZ634A
Summaries (click for details) Details Infiniium Serial Nu	mber MY57220110
2019-01-09 10:06:00:460 PM Connected to Infinitum A Application initialized and ready for use.	rsion 0.99.9029.0
2019-01-09 10:06:02:142 PM Refreshing HTML Report Debug Mode Used	No
2019-01-09 10:06:02:186 PM HTML Report Refreshed	PCI-Express Gen5 Test Application (official)
D 2019-01-09 10:06:08:277 PM Ready	2019-01-12 22:03:19 UTC -06:00


PCIe 5.0 BASE and CEM Scope Considerations

THE GREATER THE CHANNEL LOSS, THE GREATER THE BENEFIT DERIVED FROM LOW NOISE

UXR vs Z/V Series: PCIe 5.0 Channels

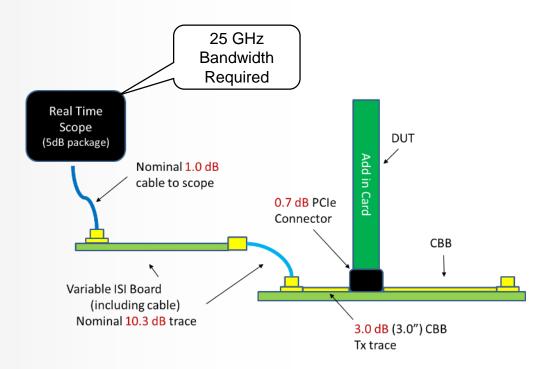
PCIE 5.0 CHANNELS ARE -36 DB TO -38 DB

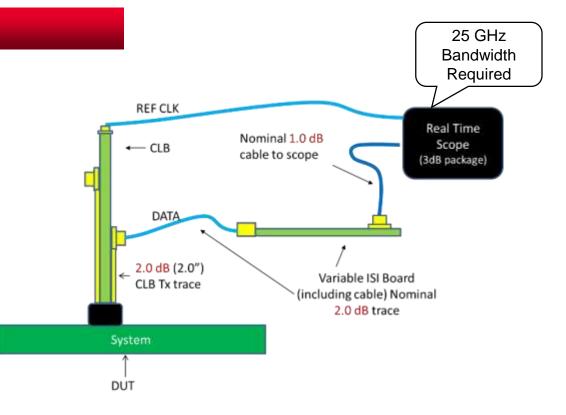


* Based on statistical simulation using Seasim

UXR vs Z Series: End of Channel Results

NOISE FLOOR MATTERS: EYE HEIGHT* @ 32 GT/S

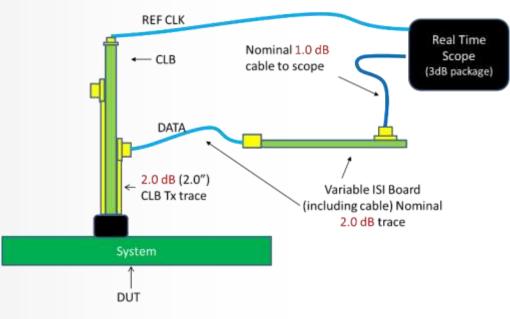

- Data Rate = 32 Gb/s
- Sigtest Composite Eye Height
 - 2M UI
 - CTLE -10 dB to -15 dB
- M8040A BERT
 - TX preset P5
 - Generator Launch =800 mV
 - DMSI=10 mV
 - CMSI=0 mV
 - RJ=0.5 ps
 - SJ=3.125 ps @ 100 MHz


32

PCIe 4.0 CEM Dual Port Testing

PCIE 4.0 CEM Fixture Setup

PHY TX MEASUREMENTS


Add-in Card (end point)

System Board (root port)

PCIE 4.0 CEM Motherboard Tests

DUAL PORT TESTING IS THE REQUIRED METHOD

System Board (root port)

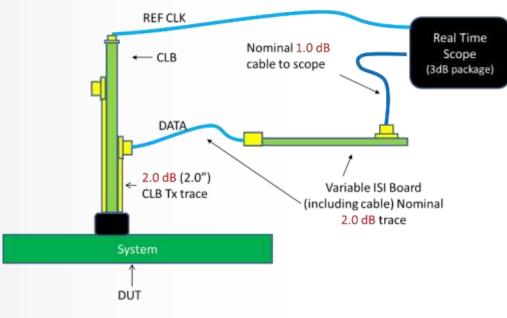
Appendix D. Alternate Method of System TX Signal Quality Test at 16GT/s

An alternate method of performing 16GT/s System Signal Quality test is provided in this note. The data and 100 MHz reference clock can be captured and post-processed separately. The data will be processed with SigTest using the 16GT/s Add-in Card Signal Quality template file (PCIe_4_16G_CEM.dat). The pass/fail limits for Eye Width at 1E-12 and Eye Height at 1E-12 will remain unchanged for 16 GT/s System Signal Quality Test. The reference clock will be post-processed with a separate clock tool to ensure the Random Jitter is less than or equal to 0.7 ps RMS as defined in the *PCI Express Base Specification*.

The signal quality test described in Section 2.7.5 is the required test method for System Tx Signal Quality testing at 16 GT/s. This alternate method is only to be used when the signal quality test described in Section 2.7.5 fails.

2.7.5 System Board Transmitter Electrical Compliance Test for 16.0 GT/s

1. Connect the Tx lane under test ...


- 2. Connect the Reference Clock (REF CLK) on the CLB to a high-speed oscilloscope ...
- 3. ...push the compliance toggle button on the CLB until the correct Tx EQ is selected...

4. Measure transmitted clock and data waveforms simultaneously with a high-speed oscilloscope or equivalent data capture instrument with the maximum bandwidth set to 25GHz

PCIE 4.0 CEM Motherboard Tests

WHY HAVE TWO METHODS?

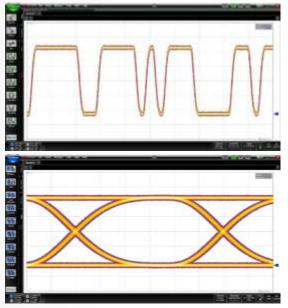
System Board (root port)

- Dual Port uses both clock and data and represents the AIC view of root port signal quality.
- System board vendors can trade off ref clock jitter for better TX jitter and still be compliant.
- For PCIe 5.0, Dual-Port test method for motherboards to be reconsidered.

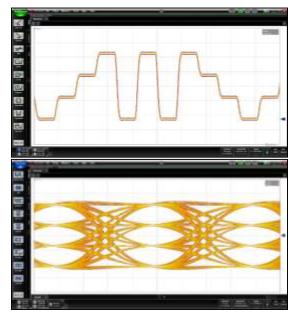
PCle 6.0 64GT/s Pathfinding

PCIe 5.0 to 6.0: From NRZ to PAM4

PCIe 6.0 Goals


WHAT MIGHT PCIE 6.0 LOOK LIKE?

PCIe 6.0 Category	Objective
Data Rate	64 GT/s, PAM4 (2x Gen5)
Latency	Low Latency FEC
Key Applications	800G Ethernet, AI, Co-Processors, Accelerators
Reliability	As good as Gen5
Channel reach	-36 dB at 16 GHz (Gen5 Channel)
Power Efficiency	As good as Gen5
Low Power	Keeps L1 sub state
Plug n Play	Backward compatibility w/ Gen1-5 (Form Factors for CEM, M.2, Other?)
Other wants for Gen6	Not cost prohibitive to implement (HVM). Testable. Simple
Spec Completion	2 years to develop and consense


NRZ (Non-Return-to-Zero) vs. PAM (Pulse Amplitude Modulation)

NRZ (PAM2)

- 2 amplitude levels
- 1 bit of information in every symbol
 - ✓ 32 GBd NRZ = 32 Gb/s
 - ✓ PCIe 1,2,3,4,5 = NRZ

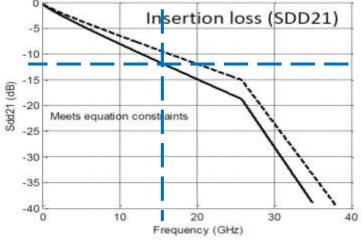
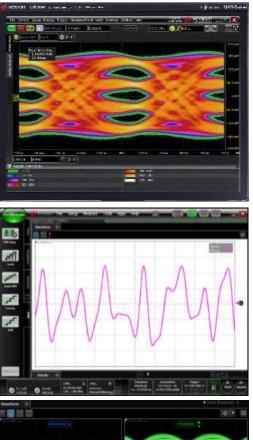
PAM4

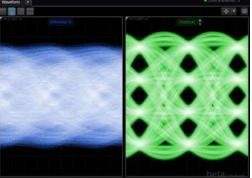
- 4 amplitude levels
- 2 bits of information in every symbol
 - ✓ ~ 2x throughput for the same Baud rate (FEC required)
 - ✓ 32 Gbaud PAM4 = 64 Gb/s
- Lower SNR, more susceptible to noise, loss, and reflections
- More complex TX/RX design, higher cost
- Nyquist frequency = 0.5*baud rate
 - PCIe 5.0 Nyquist Frequency = PCIe 6.0 Nyquist

Why Does PCIe 6.0 Need PAM4?

ENABLES HIGHER DATA THROUGHPUT

- NRZ rates > 32 Gb/s
 - Limited channel reach unless channel BW is increased (and reflections/xtalk are properly managed)
 - Increasing (e.g. doubling) channel BW increases cost
- PAM4 yields 2 bits / symbol
 - Effectively halves the channel BW needs vs NRZ
- Allows designers to develop products to fit the cost structure of available channel technologies.

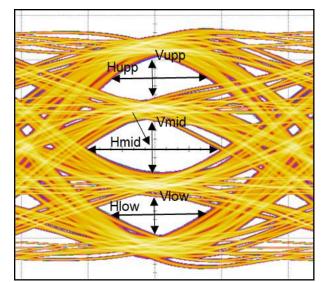

Figure 5: CEI-56G VSR NRZ channel

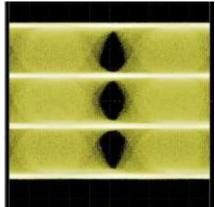
Clock Recovery for PAM4 Designs

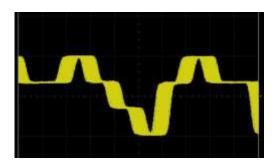
- Clock recovery (CR)
 - Recovers a clock for the Rx to use in real systems
 - Standards require scopes to emulate most basic CR used in real Rx (track out low-frequency jitter, trigger the scope)
- PAM4 adds complexity
 - Transitions no longer only at 0V diff
 - CR Loop BW reduced from 10 MHz to ~ 4 MHz (IEEE 802.3bs/cd and CEI-56G-PAM4, same for proposed "112G" standards)
 - 1st Order PLL (no peaking, 20 dB/decade roll-off)
- Instrument clock recovery
 - Real-time oscilloscopes use software CR
 - Equivalent-time oscilloscopes (aka Sampling scopes) use hardware CR
 - CR needs to be able to lock onto "closed eyes"

New Tx and Rx Measurements for PAM4

- Multiple eye width & eye height computations
- Eye symmetry mask width (ESMW)
- Transmitter linearity
- Tx output jitter
 - JRMS
 - J3u, J4u
 - Even-Odd Jitter (EOJ)

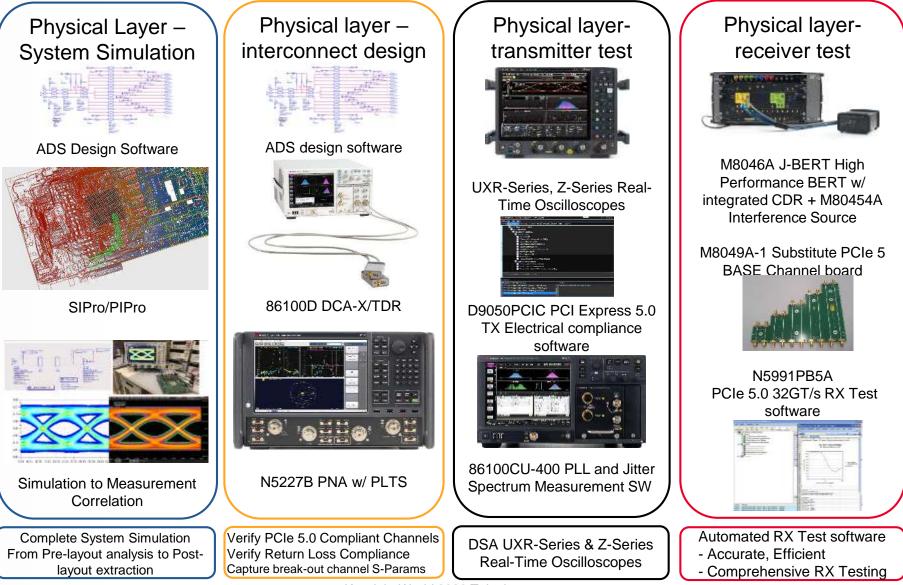

measured very differently compared to legacy NRZ signals


	Real-Time Oscilleso	xpi /16/2-2016	664'S 10'DIT					infinilum	UARS
File Control Setup Di	isplay Trigger	Measure/Mar	rk Math Anai	yze Utilitie	: Help	4.1 \$/21		EYSIGHT	
2	56 G5a/s 1.	81 Mpts	~~~~	\rightarrow		0 GHz 🕝	∏ 8 mV	52	-
117 mV/ 0.0	v 😔 >	a							
									469 n
3 117 mV/ 0.0 Real-Time 1.07559 7 Wfms									352 m
7 Wfms				_	~				234 =
									23
									117 m
2									12 0.0
				_					-117 m
	100					200			-11/ 11
	10100					1122			21
									21 -234 п
	2					2			
									-352 п
-37/5 ps -30.1 ps	-22.6 ps	-15.1 ps	-7.53 ps	0.0 s	7.53 ps	15.1 pt	22.6 ps	30.1ps	-352 п
- Andrews - Andr			-7.53 ps	0.0 s	7.53 ps	15.1 рк	22.6 ps	30.1 ps	-352 m -469 m
2.00 UI 0.0 UI			-7.53 ps	0.0 s	7.53 ps	15.1 рк	22.6 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI			-7.53 ps	a0s	7.53 ps	151 рк	22.6 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI	iges)	• •					22.6 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI Results (Measure All Ed Measurement	lges) Current	Mean	Na		1 + 197		22.6 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI Results (Measure All Ed Measurement • Eye 2/3 Wath(1-2)	iges) Current 20.824 ps	▶ □ Mean 20.666 ps	Nin 20.765 ps		1 - 197 198 - 395		22.5 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI Results (Measure All Ed Measurement • Eye 2/3 Width(1-2) • Eye 1/2 Width(1-2)	lges) Current 20.824 ps 24.000 ps	Mean 20.866 ps 24.042 ps	Min 20.765 ps 24.000 ps		1 + 197 198 - 395 396 - 791		22.5 pt	30.1 ps	-234 m -352 m -469 m 37.6 ps
2.00 UI 0.0 UI Results (Measure All Ed Measurement 5 Spc 23 Wath(1-2) 6 Spc 1/2 Wath(1-2) 6 Spc 0/1 Wath(1-2)	lges) Current 20.824 ps 24.000 ps 20.882 ps	Mean 20.866 ps 24.042 ps 20.958 ps	Min 20.765 ps 24.000 ps 20.765 ps		1 - 197 198 - 395 396 - 791 792 - 158	3	22.6 pk	30.1 ps	-352 m -469 m
2.00 UI 0.0 UI Results (Measure All Ed Measurement 5 Eye 2/3 Webh(1-2) 9 Eye 2/3 Webh(1-2) 9 Eye 0/1 Webh(1-2) 9 Eye 2/3 Height(1-2)	iges) Current 20.874 ps 24.000 ps 20.882 ps 102.6 mV	Mean 20.866 ps 24.042 ps 20.958 ps 103.2 mV	Min 200765 ps 244000 ps 200765 ps 10226 mV		1 - 197 198 - 395 396 - 791 792 - 158 1584 - 31	2 56 33	22.5 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI Results (Measure All Ed Measurement 6 Eye 23 Wath(1-2) 6 Eye 01 Wath(1-2) 6 Eye 01 Height(1-2) 6 Eye 218 Height(1-2)	Iges) Current 20.824 ps 24.000 ps 20.882 ps 102.6 mV 107.1 mV	Mean 20.866 ps 24.042 ps 20.958 ps 103.2 mV 107.1 mV	Min 20.765 ps 24.000 ps 20.765 ps 102.6 mV 106.2 mV		1 - 197 198 - 395 396 - 791 792 - 158 1584 - 31 3167 - 63	2 56 33	22.5 ps	30.1 ps	-352 п -469 п
2.00 UI 0.0 UI Results (Measure All Ed Measurement • Eye 2/3 Wath(1-2) • Eye 1/2 Wath(1-2) • Eye 2/3 Height(1-2) • Eye 2/3 Height(1-2) • Eye 2/3 Height(1-2) • Eye 2/3 Height(1-2)	Iges) Current 20.824 ps 24.000 ps 20.882 ps 102.6 mV 107.1 mV 109.0 mV	Mean 20.866 ps 24.042 ps 20.958 ps 103.2 et/ 107.1 mV 109.0 mV	Min 20.765 ps 24.000 ps 20.765 ps 102.6 mV 106.2 mV 106.2 mV		1 - 197 198 - 395 396 - 791 792 - 158 1584 - 31 3167 - 63	2 56 33	22.5 pt-	30.1 ps	-352 п -469 п



PCIe 6 & Spread Spectrum Clocks (SSC)

- PAM4 signals carry significant DDJ even <u>without</u> SSC (4 levels, 12 different transitions)
- PAM4 with SSC has not yet been implemented at these baud rates in other stds.
- SSC effects for PCIe 6.0 require further study
 - If SSC is not adequately tracked out, additional eye closure will occur (degrading link SER performance)
 - If a different CR model (BW, loop order) is required compared to IEEE/CEI (4 MHz, 20 dB/decade), how will it impact signals?
 - Need very tightly controlled CR loop bandwidths
 - Reduce max SSC deviation %?
 - Is SSC still required at these rates?



Measurement Challenges for PCIe 6.0

- What can be leveraged from test parameters and test methods developed for PAM-4 Signals established to-date by IEEE and OIF-CEI
- Choice of CDR model may be critical (higher PLL BW and Peaking could cause difficulty)
- Ensuring that measurements are performed at test points that have been equalized to achieve an open eye may be necessary
- SSC (Spread Spectrum Clocking) adds another layer of complexity
- FEC Performance and Native BER will be critical

PCI Express® 6.0 – Keysight Total Solution

