

Breakthroughs in Wideband Millimeter-Wave Power Amplifier Test

R&D Software Engineer, Aerospace, Defense, and Government Solutions Group Augustine Stav

Industry Common Practice

"I need two sets of instrumentation to characterize my power amplifier..."

Overcoming New Challenges

Intro: Target Device / Measurement Challenge Keysight Solution Underlying Technology Measurement Example Summary

Target Device: PA with a Wideband Signal

Any amplifier which operates under modulated signal conditions is a target device for this solution. Power amplifiers in 5G FR2 front end are a "sweet spot" application.

Requirements

- Operate at extremely wide bandwidths at mmW frequencies
- Good power efficiency for higher power density with power/heat management
- OFDM operation scheme requires linear output signal for better signal quality

Key challenges for designers

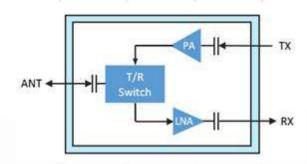
- Linear amplification at high power, with high efficiency in any operating conditions
- Integration into beamformer component

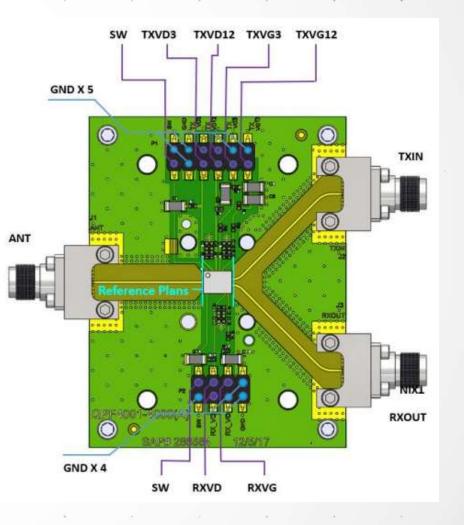
Key measurement for design verification

- Linearity evaluation with wide bandwidth at mmW frequencies
- Figures of merit: EVM, ACPR

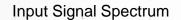
Device Example: PA in 5G FR2 System

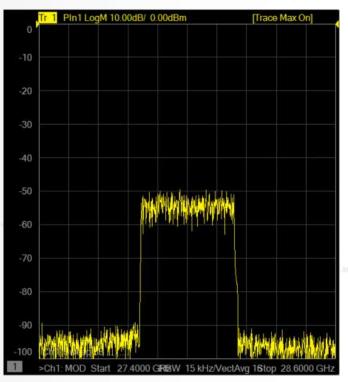
https://www.qorvo.com/products/p/QPF4001

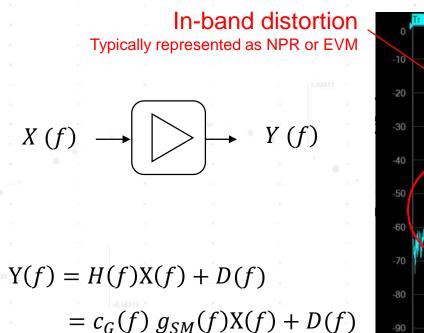

QONOO

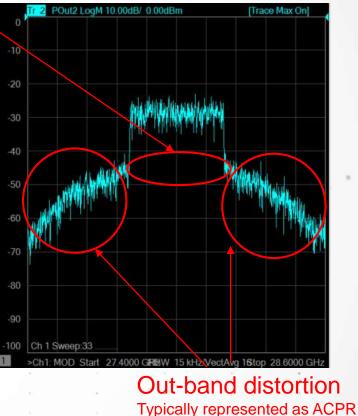

Product Description

The QPF4001 is a multi-function Gallium Nitride MMIC front - end module targeted for 28 GHz phased array 5G base stations and terminals. Fabricated on Qorvo's 0.15um GaN on SiC process, the device combines a low noise high linearity LNA, a low insertion-loss high - isolation TR switch, and a high - gain high - efficiency multi-stage PA.

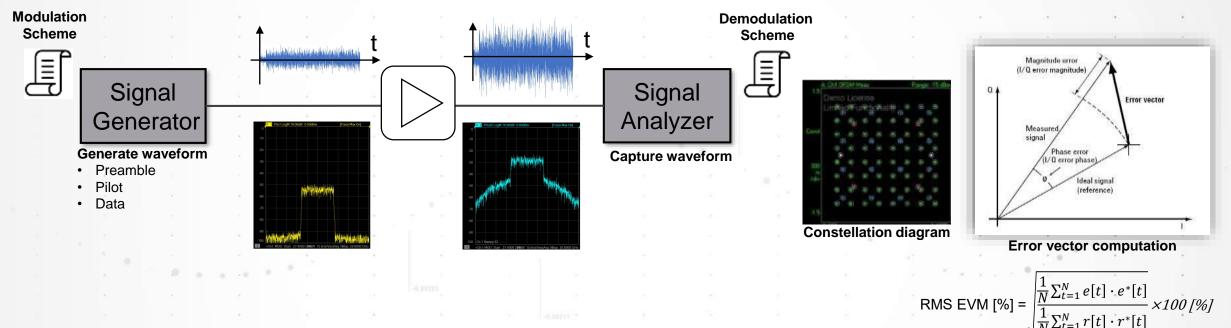

The QPF4001 operates from 26 GHz to 30 GHz. The receive path (LNA + TR SW) is designed to provide 17 dB of gain and a typical noise figure of 3.5dB. The transmit path (PA + SW) provides 27 dB of small signal gain with high linearity of 35 dBc ACPR and low EVM of 3% at 23 dBm average output power, while supporting peak power of 1 - Watt.






Linearity Evaluation Under Modulated Conditions Nonlinear Distortion Model

Output Signal Spectrum



- Nonlinear distortion performance is traditionally measured with signal generator and signal analyzer
- EVM is commonly used as the figure of merit to show performance of in-band distortion

Traditional EVM Measurements

Challenges of component testing with wideband modulated signals

- Residual EVM (EVM of test system) is close to EVM of DUT
 - Source: Imperfections in generated signal directly affect measured EVM
 - Receiver: Capturing wideband signal also captures wideband noise. S/N ratio degrades as bandwidth increases.

Signal fidelity

- Lossy cable and mismatch in high frequency. Actual signal applied to DUT is different from ideal.
- Test system optimization for specific power level to minimize nonlinearity of receiver while optimizing S/N ratio

Intro: Target Device / Measurement Challenge Keysight Solution Underlying Technology Measurement Example Summary

Modulation Distortion App on PNA-X with SG

Modulated source such as:

Modulation Distortion app on PNA-X

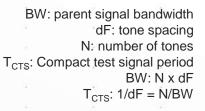
- Software option of PNA-X that characterizes distortion of the device under modulated stimulus conditions
- Simple & easy setup. Measurement setup fully integrated in PNA-X
- Leverages state of the art calibration for the best accuracy
- Single connection for existing VNA measurements and new feature which delivers ACPR, EVM and NPR.
- Lowest residual EVM system in the market

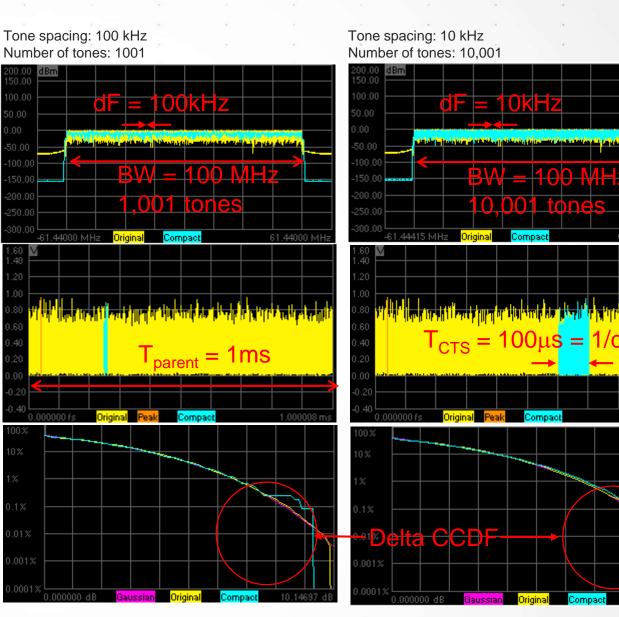
Key Contributions to PA Industry

- Overcome wideband measurement challenges
 - Low residual EVM due to wider system dynamic range (lower noise floor)
 - Signal fidelity at the DUT input easily achieved by PNA calibration techniques
 - Easy calibration for "vector corrected" EVM measurements
- Measurement reproducibility
 - Obtain consistent measurement results, supported by PNA calibration techniques
- Faster measurement speed
 - "Test time is reduced by a factor of 10 in my DVT test scenario"
- Design flow improvement with simulation
 - Same computation engine as PNA-X to simulate nonlinear behavior in ADS will be available
- Leverages PNA-X hardware to make analysis under modulated conditions
 - PNA-X: De facto standard
 - Single connection, multiple measurement

Underlying Technology

Compact Test Signal


Modulation Distortion "compacts" the stimulus waveform to make measurements faster.

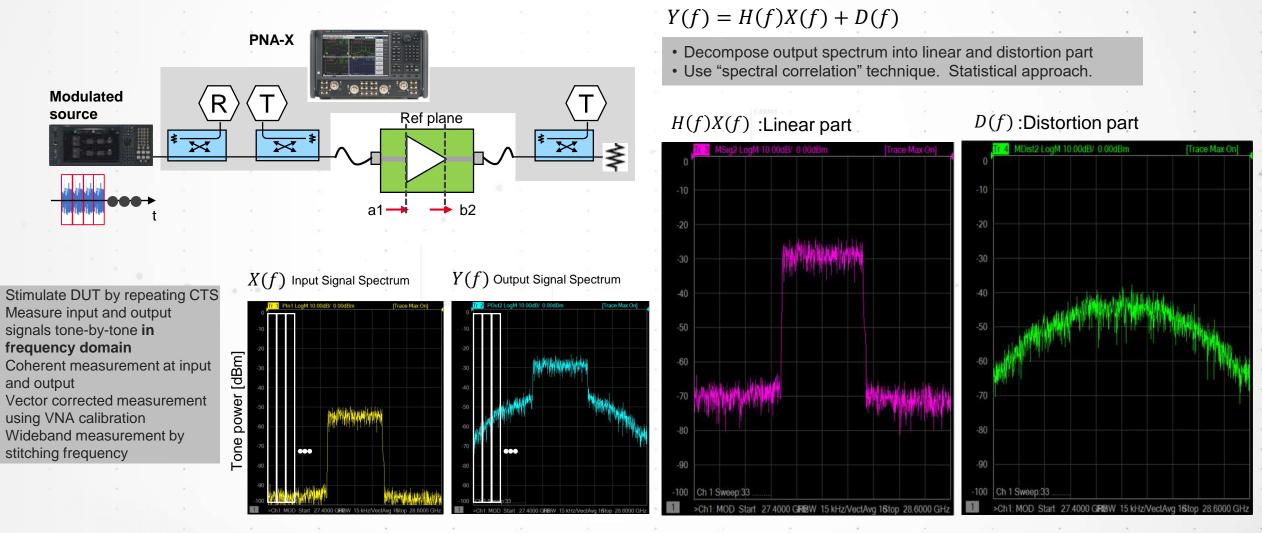

"Parent waveform" e.g. 5G NR 100MHz BW signal

"Compact Test Signal"

Slice of waveform that represents same

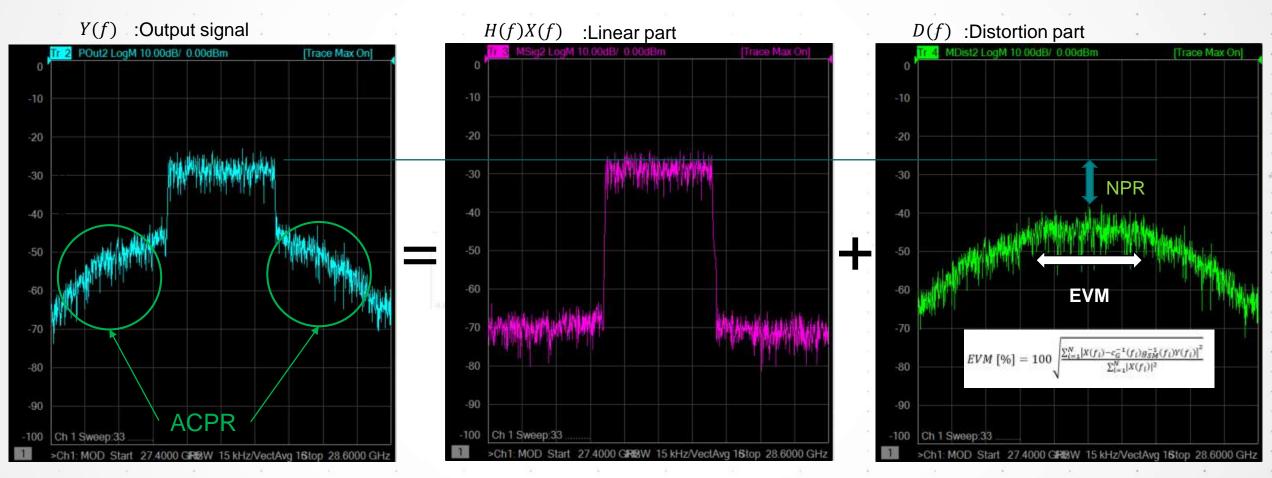
- Frequency signature
- Statistical distribution (CCDF)

• A finer tone spacing results in a longer period for the compact test signal


A longer period results in more accurate CCDF

12

Underlying Technology


Multitone measurement and signal decomposition

Underlying Technology

Computing figures of merit

• EVM computed in time domain or frequency domain are mathematically equivalent (Parseval's theorem)

Correlation Study - Setup

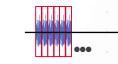
Traditional SA/SG setup

Signal Generation

Waveform for traditional EVM

- Preamble •
- Pilot
- Data

Signal Analysis


"Compact" the

waveform

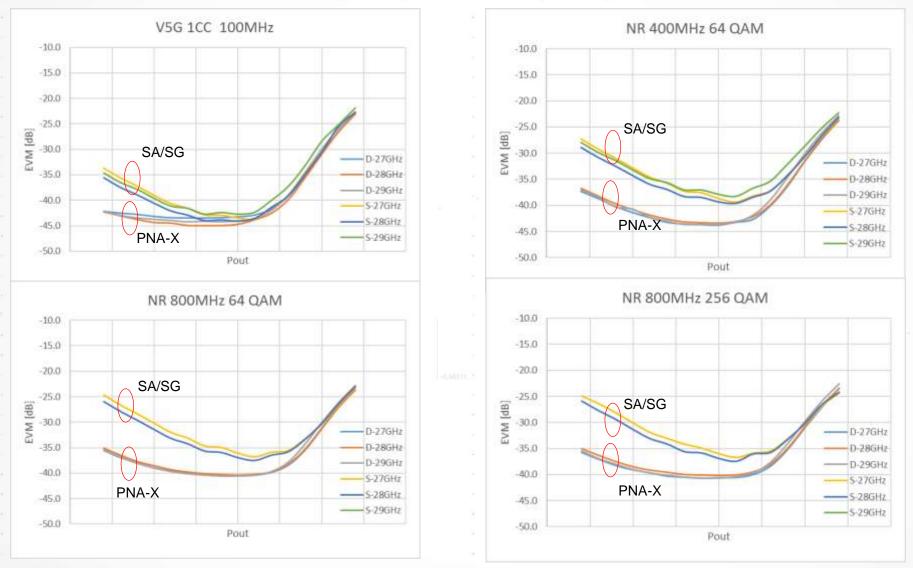
Modulation Distortion setup

Signal Generation

"Compact waveform" Represents the same characteristics

as original waveform

- Frequency signature
- Statistical distribution


Stimulus response analysis **PNA-X** with MD option

Correlation Study - Results

DUT: Keysight 50GHz amplifier, 12 dB Gain

٠

SA/SG and PNA-X results correlate when the device is operating under nonlinear conditions

• PNA-X shows lower residual EVM which shows the Pout where the DUT starts nonlinear behavior

Technique Comparison for Measuring EVM for Amplifiers

89600 VSA and X-Apps

Measures all contributors to EVM

Keysight signal analyzers, oscilloscopes, PXI VSAs

Benefits

- Standards compliant algorithms (ex: 3GPP, IEEE, etc.)
- Flexible views to view EVM vs. time, frequency, subcarrier, power...and many more
- Constellation diagram view

Considerations

- Includes contribution of DUT and input signal
- Limited by the intrinsic BW of the analyzer

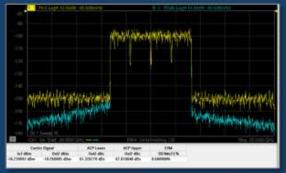
Modulation Distortion App

Isolates the distortion and additive noise contributions

PNA-X

Benefits

EVM


= distortion +

noise +

phase noise +

IQ imbalance +

input signal

- Removes contribution of phase noise, imbalance and signal inputs
- Very wide measurements bandwidth limited only by the signal generator
 - High dynamic range and low EVM noise floor

Considerations

- Requires repetitive waveform
- No constellation diagram

Intro: Target Device / Measurement Challenge Keysight Solution Underlying Technology Measurement Example Summary

PNA-X Measurement Class "Modulation Distortion"

- PNA-X firmware has the Modulation Distortion app which has everything required for the measurement
 - Creates stimulus
 - Controls external generator Calibrates the measurement system
 - Makes measurement

Measurement Class :	Channel 1								
Determines the types	of measurements	available on a	channel.						
General		Converters							
◯ Standard		⊖ Gain Com	pression Conv	erters					
◯ Gain Compression		◯ IM Spectr	um Converters	5					
○ Differential I/Q		○ Swept IM	D Converters						
◯ IM Spectrum		O Noise Fig	ure Converters	5					
○ Swept IMD		O Scalar Mixer/Converter + Phas							
Modulation Distort	ion	○ Vector Mi	xer/Converter						
 ○ Noise Figure Cold ○ Spectrum Analyze 									
Spectrum Analyzer Show setup dialog Confirm changes New Channe		ОК	Cancel	Help					

Sle Instrument Response Stimulu	a cally Help							
7 C A R 6 Q					Power Level 10 dBm		Power	M00 X
10.00dB/ 0	00ckim						Power Level	Han
Modulation Distortion Setup Charme	4.4			×			-10.00=	-
Sweep RF Path Modulate Moas							-	Post Power
							RF Power	Leveling & Offsets
				N. 1			5N	
Sauros inyMCS	Treate Modulation					×	Linear Input Per	Attraction
	Modulation Type Come	act -					-32.60	
	Original Signal	ALC: .			Optimize Signal		-	
		Instrument/Desktop/Samid	GNR 25	BOAM 120kt	Enable Optimizer Setup	61	Start Power	
Medulation File C:WinersUnst	Sample R			1.000	Frequency Tolecance - 1.00 %	[8]	(35.80m	
Lood File	Number tr	Samples 1228800			Calculated Result	100	Stop Power	1
Enable Modulation	Tone Space Waveform						-0.88	
	Compact Signal							
Envolve Source Conversion	Signal Span	Oesired 98.2150 MHz	Priority	Calculated an 1786 hitro	Design of the standard streets			
Enuble Pulse	Wavafarm Pariod -	10.181744 usec	Q	T0.0076 pr				
	Number of Tones	1001		1992			100000000	12
and the second s	Peak-to-Avg	11.487 dB		8.514 (0)		100	Power and Attenuators	
EASE advanced	Carrier Offset	-51.4000 kHz						-1
Cont MOD Start 135000	DAC Scaling	85.00 %			Display Spectrum-Ideal - File	1	MOD Setup	
Type Carrier Carrier Out2 dBm IBW	Signal Start Term	0 pase:		525.724 µm	Number of Samples 1040		100 3000-	
CP+EVM -21.76 dBm 100.1 MH	Number of Files	5			Calculated Sample Rate 122/847 MPtz Measurement Time 1.4 s			
					Filename 50NR_2500AM_125NHz_503	2.100M.		
	The signal was recalled	1						
	Calculate Se	nvo	D	efaults	OK Cancel	Help		

Setup Channel (Sweep and RF Path Setup)

Sweep RF Path	Nodulate Measure		Source DUT		Carrier Power /	Modulate Measure	0dBm DUT -5.0		Receiver	*
Carrier Frequency SA Center v SA Span v	28.00000000 GHz + 28.00000000 GHz + 1.200000000 GHz +	Carrier Power At		•	Nominal Src Amp	DUT Input Port 1 ~	Nominal DUT Gain 0.00 dB	DUT Output Port 2 ~	Rcvr Atten 0 dB	
Sweep Details										
Sweep Details		ОКС	ancel Apply	Help	BASIC advanced		ОК	Cancel	Apply	Help
	- <u>.</u>	ОКС	Apply	Help	BASIC advanced		ОК	Cancel	Apply	Help
ASIC advanced		ОК Са	Apply	Help	BASIC advanced	· · · ·	OK	Cancel	Apply	Help
ASIC advanced		ОКСа	ancel Apply	Help	BASIC advanced		ОК	Cancel	Apply	Help
ASIC advanced		ОК С. 	ancel Apply	Help	BASIC advanced		OK	Cancel	Apply	Help
SIC advanced		<u>ОК</u> Са 	ancel Apply	Help	BASIC advanced		OK	Cancel	Apply	

Setup Channel (Modulate Setup)

	Setup : Channel 1				
weep RF Path	Modulate Measure				4
Source myVXC	i v			Source DUT	•
Modulation File	cuments\waveform	1/5GNR_256QAM_120kHz	2_SCS_400MHz_491	p52MHzSR_1001_1	1.midx
	Load File	Create	Edit	Properties	
	ion	Create Source Cal	Edit	Properties	
Enable Modulat Enable Source Enable Pulse	ion		Edit	Properties	
☑ Enable Source	ion	Source Cal	Edit	Properties	Help
☑ Enable Source	ion	Source Cal Pulse Setup			
Enable Source	ion Correction	Source Cal Pulse Setup OK	Cancel	Apply	

KEYSIGHT TECHNOLOGIES

Nodulation Ty	pe Comp	pact ~					
Original Sig	nal					Optimize Signal	
Filename	C:\Users\	Instrument\D	ocuments	waveform\50	Enable Optimizer	Setu	
	Sample Ra Number of Tone Space	f Samples	491.520 4915200 100.000			Frequency Tolerance Calculat	1.00 %ed Result
	Waveform		10.0000	ms		40.00	
Compact Si Signal Spari Tone Spaci Number of Peak-to-Avg Carrier Offs DAC Scalin Signal Start Number of I	n Tones g set g Time	Desi 383.940 M 383.940000 1001 12.041 df -60.0000 M 85.00 % 0 psec 5	1Hz 0000 kHz 3	Priority	Calculated 383.810 MHz 386.905 kHz 993 8.307 dB 2.83156 ms	0 00 20 00 40	1270
The calcula		plete; ready t	o save. Recall.		faults	Measurement Time Filename 5GNR_256Q/ OK	1.7 s AM_120kHz_SC Cancel

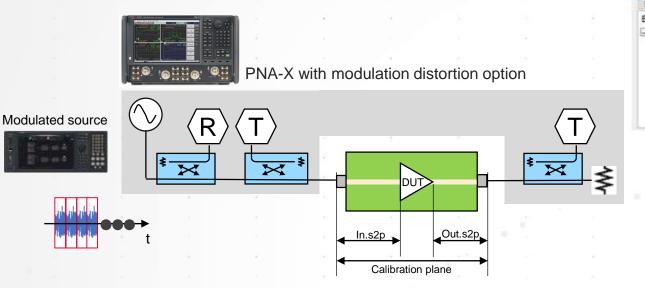
Original signal file can be:

- .wfm file (created by Keysight Signal Studio software)
- .csv file created by any tool

Setup.

I 120kHz SCS 400M.

Help

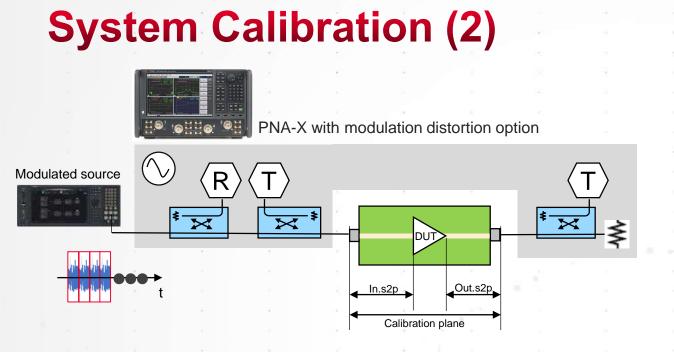

Setup Channel (Measure Setup)

TECHNOLOGIES

Modulation Distort	ion Setup : Channe	KI					×	Modulation Dis	cortion Setup	: Channel 1					×
Sweep RF Path	n Modulate Measu	ure					*	Sweep RF	Path Modula	ate Measure					*
Measurement 1	Type ACP+EVM	~						Measureme	nt Band Table	е					32
	noi Lim						2	Band	Meas Type	Carrier Offset	Carrier IBW	ACPLo Offset	ACPLo	ACPUp Offset	ACPU
								Band 1	ACP+EVM	0. MHz	400. MHz	-400. MHz	400. MHz	400. MHz	400. MHz
Autofill	Offset Freq	,	nteg BW	A	CPLo Carr	ier ACPUp									
Carrier	0 Hz	400.00	00000 MHz	_	<u> </u>										
1001		- food -	1		14										
ACPLo	-400.000000 MHz	\$ 400.00	00000 MHz												
ACPUp	400.000000 MHz	\$ 400.00	00000 MHz		oH	z									
					Measuremen	nt Details									•
							100				F P	T 11			
											Edit	Table	~	Measurement De	etails
BASIC advanced	d		ОК	Cancel	Apply	Help		basic ADVAN	ICED			OK	Cancel	Apply	Help
	-	Ξ.		9		(4)	3	1	- 0		+	-			•
· ·				2	4					÷.			2		•
							2	8	*		*	(*)			
			2.5 			(8) 		55 		0	*	*			

22

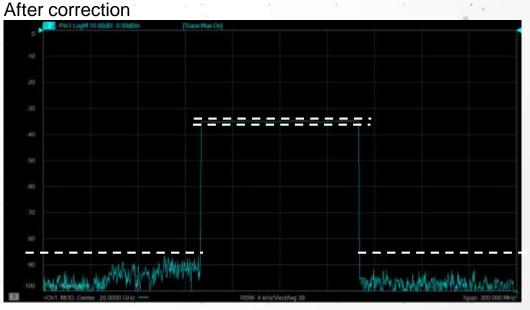
System Calibration (1)



Use PNA-X "CalAll" to establish S-parameter calibration plane at DUT

- Conventional calibration method directly leveraged for modulation distortion measurement
- Fixture simulation feature available to move reference plane up to DUT
- Mismatch of the input port can be removed

Internet Class Cal Porta Chart Port 3 Address Port 4 Address Port 3 Port 3 Port 4 Address	ted Cha	nnel	5.											
Modulation Distortion 1 2 Port 3 Apply 5 all ement Class Cal Properties mable Extra Power Cals No Independent Source Cal Calbration Doints 201 Calbration Doints 201 Calbrate Al: Select DUT Connectors and Cal Kts Dut Connectors Cal Kis Port 2 APO35 Ismale Weish-60006 ECal 01397 Cal Method: 2-Port ECal Thru As Unknown Solit Power Mater Settings Power Cals Power Cals Entrags Power Cals Power Mater Settings Power Cals Power Mater Settings Power Cals Power Mater Settings Power Cals Power Ma	ela								al Ports					
	nel Me	asu	rement	Class	i	Cal P					1	14		
Port 4 Apply all datasets ement Class Cal Properties increase No Independent Source Cal increase No Independent Source Cal increase 201 Calbration Data 200 dB NA 000 dB 000 dB 500 dBm 0 dB 000 dB Calbration Attenuator Settings Port 1 NA 0 dB 000 dB 0 dB 000 dB Calbrate AI: Select DUT Connectors and Cal Kts Port 2 NA DUT connectors Cal Kts Port 2 APO 35 lemale Neesi -60000 ECal 01397 Cal Method 2-Port ECal Thru As Unknown SOLT Neesi -60000 ECal 01397 Port 2 APO 35 lemale Part 2 APO 35 lemale Part 2 APO 35 lemale Part 3 1300 Dite - 4500 Dite Part 4 201 Tota Parent Port 4 201 Tota	Mo	dula	tion D	istonio	n	1.2								
ement Class Cal Properties secilianeous able Extra Power Cals No Independent Source Cal informion Span User Span Data Calibration Attenuator Power Unit Source Attenuator Power Offises Port Odd Odd Odd Odd Odd Odd Odd Odd Odd Od								and the second se	A					
secilianeous sable Extra Power Cals No Independent Source Cal Nibration Span User Span Yoration Spins 201 Calbraton Attenuator Settings 000 dB • 0.00	ement	Clas	s Cal I	Proper	ties					Chariteris				
able Extra Power Cals No Independent Source Cal														
Hibration Span User Span 201 Calibration Attenuator Settings Ports Power Limit Source Attenuator 1 NA 005 0 00 dB 0 500 dB 0 600 dB 0 000 dB 0 600 dB 0 000 dB 0 0000 dB 0 000 dB 0 000 dB 0 000 dB 0 0000 dB 0				Cals		N	lo Indepe	ndent S	ource Cal					
Utration Points 201 Calbration Attenuator Settings Ports Power Limit 1 N/A 0 dB 0 00 dB 5 00 dB 0 dB 2 N/A 0 dB 0 00 dB 5 00 dB 0 dB 0 dB 0 00 dB 0 dB 0 00 dB 0 dB 0 00 dB Calbrate Al: Select DUT Connectors and Cal Kts Port1 APC 35 female VH091-60006 ECal 01397 Cal Method 2-Port ECal Thu As Unknown, SOLT Port2 APC 35 female VH091-60006 ECal 01397 Cal Method 2-Port ECal Thu As Unknown, SOLT Ned91-60006 ECal 01397 Cal Mods Power Cal Settrings Power Sensor Correcture Cal K8 Orisbasis Power Sensor Correcture Cal K8 Orisbasis 12 Yabit Orisbasis 12 Yabit Orisbasis 12 Yabit Orisbasis 12 Yabit Orisbasis 12 Ya														
Calibration Attenuator Settings Ports Power Limit Source Attenuator Power Offsets SParameter Call Receiver Attenuator 1 N/A 0dB 000 dB 500 dBm 0dB 0dB 0dB 2 N/A 0dB 000 dB 500 dBm 0dB								n			~	1		*
Ports Power Limit Source Attenuator Power Offsets SParameter Cal Pott Power Receiver Attenuator 1 NA 008 000 dB 5:00 dB 0	libratio	n Pr	ninte		C	2	01							
1 N/A 0 dB 0 00 dB 500 dBm 0 dB	Callbra	ation	Atter	iuator	Settings									
2 N/A 0 dB 0.00 dB 5.00 dB 0 dB 0 Calbrate Al: Select DUT Connectors and Cal Kts UT Connectors Cal Kts Cal Kts Cal Method: 2-Port, ECal Thru As Port 1 APC 35 female N4691-60006 ECal 01397 Cal Method: 2-Port, ECal Thru As Modify Power Cal Settrings N4691-60006 ECal 01397 Cal Method: 2-Port, ECal Thru As Modify Power Cal Settrings Power Methods Ecal 01397 Cal Method: 2-Port, ECal Thru As Modify Power Cal Settrings Power Methods Ecal 01397 Cal Method: 2-Port, ECal Thru As Modify Power Cal Settrings Power Methods Ecal 01397 Cal Kts Power Sensor Corrector Cal Kts Power Methods Ecal 01397 Power Methods Ecal 01397 Cal Al Contituuts Channel Points Progency Power Methods Ecal 0139 Moduation Distortion 1 1 1 1 1000	Po	orts	Power	Limit	Source Atte	nuator	Power Offs	sets			Receiver Atte	enuator		
Calbrate Al: Select DUT Connectors and Cal Kts DUT Connectors Cal Kts Pon11 APC 35 female N4691-60006 ECal 01397 Cal Method: 2-Port, ECal Thru As Unknown, SOLT Modifi Power Cal Settrings Power Cal Settrings Power Cal Settrings Power Sensor Careector Cal Kit Contibutor Power Meter Settings Cal Al Contibutor Channel Cal Kit Power Sensor Careector Cal Kit Settings Contibutor Channel Posts Posts Posts Posts Moduson Disterion 1 12 4 3500 CHz 201 Moduston Disterion 112 4 3500 CHz 4550 CHz Vertice 201	1	1		N/A	0 dB	*	0.00 dB	-	-5.00 dBm	-	0 dB	.		
Calbrate Al: Select DUT Connectors and Cal Kts DUT Connectors Cal Kts Pon11 APC 35 female N4691-60006 ECal 01397 Cal Method: 2-Port, ECal Thru As Unknown, SOLT Modifi Power Cal Settrings Power Cal Settrings Power Cal Settrings Power Sensor Careector Cal Kit Contibutor Power Meter Settings Cal Al Contibutor Channel Cal Kit Power Sensor Careector Cal Kit Settings Contibutor Channel Posts Posts Posts Posts Moduson Disterion 1 12 4 3500 CHz 201 Moduston Disterion 112 4 3500 CHz 4550 CHz Vertice 201	2	2		N/A	0 dB	-	0.00 dB	\$	-5.00 dBm	-	0 dB	\$		
Calbrate Al: Select DUT Connectors and Cal Kts UT Connectors Out Connectors Cal Kts Port 1 Port 2 Port 2 Port 35 female Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Unknown, SOL T Cal Method: 2-Port, ECal Thru As Cal Method: 2-Port, ECal Th							17				17			- 21
Power cal at Port1 Use Multiple Sensors Power Mater Settings. De-embed adapter Power Sensor Corrector Cal Kr. Name Name Name					APC 3.5 female	~		0006 ECal (01397				Thru As	-
Preser cal at Pon1 Ubse Multiple Sensor Power Mater Settings. De-embed adapter Power Sensor Corrector Cal Kit Ignored Ignored Ignored Cal Al Contributor Channel Prequency Porce: Flow SParameter Cal 200 12 43500 GHz 46500 GHz 201 201 Modulation Distortion 1 12 43500 GHz 46500 GHz 201 Set														-
Power call at: Port1 Use Multiple Sensor Power Multiple Settings. De-embod adagter Power Sensor Corrector Cal Kit Ignessed Ignessed Ignessed Call Al Contributor Channel Prequency Porce: FBW SParameter Call 220 12 43509 GHz 46500 GHz 201 201 Modulation Distortion 1 12 43500 GHz 46500 GHz 201 201				Press	er Cal Settings									
Cai Al Contituents Channel Ports Prequency Ports FBW SParameter Cai 200 12 43500 CHz 4550 CHz 201 0			Mod									Privat	Mater Settings	
Power Sensor Cornector Cal Kit Ignored Image: Cal Addition of the sensor Cornector of the sensor of t				1.00				0	Use Multiple Sen	10/8		1.570.01	Carlo Conciga	
Contributor Channel Ports Prequency Ports FBW SParameter Cal 230 12 43500 CHz 4550 CHz 201 1000 Modulason Distortion 1 12 43500 CHz 46500 CHz 201									Call Ki					
Combinator Cal 200 12 43500 GHz 45500 GHz 201 1000 SParameter Cal 200 12 43500 GHz 45500 GHz 201 1000 Modulation Distortion 1 12 43500 GHz 201	100					lipme	-2							
SPanameter Cal 200 1.2 4.3500 GHz 4.6500 GHz 201 1000 Modulation Distortion 1 1.2 4.3500 GHz 4.6500 GHz 201					Cal Al									
SPanameter Cal 200 1.2 4.3500 GHz 4.6500 GHz 201 1000 Modulation Distortion 1 1.2 4.3500 GHz 4.6500 GHz 201					Contribut	si .	Chantel	Parts	Frequency			10.3	Ports FBW	
					SParame	ter Cal	290	12	4.3500 GHz				201 1000	
				5										
	14				K									2
				4			1		4					- 2



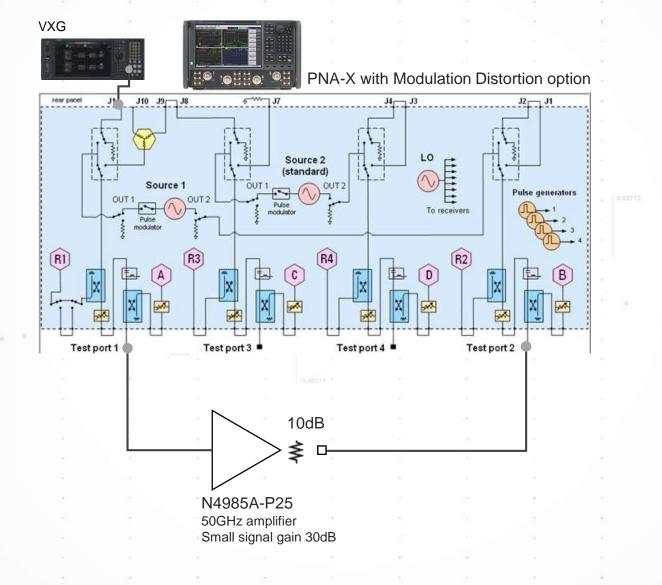
Use vector calibrated receivers to correct stimulus at DUT plane

- Correct channel power
- Correct IQ data to have flat input signal at reference plane
- Suppress ACPR of the signal at reference plane

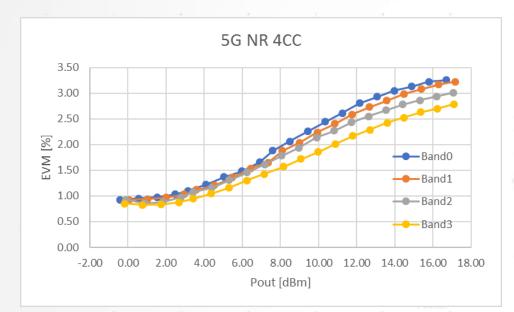
Before correction

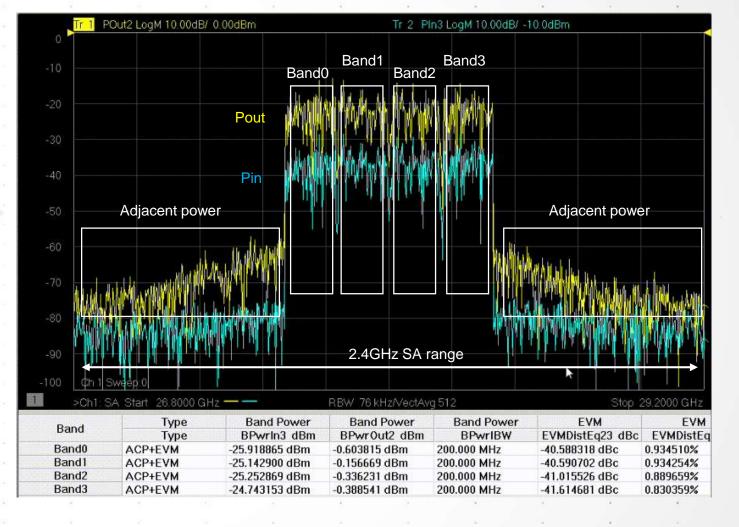
Measurement condition: 100MHz Flat tone, 400MSa

- 24


Measurement Examples

- 1. 5G NR 4 x 200MHz (4CC)
- 2. 2GHz BW flat tone Gaussian signal


Measurement Example 1: 200MHz 4CC Measurement


26

Measurement Example 1: 200MHz 4CC Measurement

1.8 sec for each power point

- EVM measurement for all bands
- Adjacent power measurement

Measurement Example 2: 2GHz Flat Tone Gaussian Signal

reate Modulation						×	POUG	LogM 10 00dB/ 0 0	0dBm			Tr 2 Pin1	LogM 10 D0dB/	1 00dBm		
Addutation Type Flat Signal Signal Span Tone Specing Number of Tones Peak-to-Avg Carrier Offset Phase Type Random Phase Seed DAC Scaling	Desired Pr 2.000000000 GHz 100.00000000 kHz 2	a myVXG iority Calculated 2.00216 GHz 2.00617 MHz 999 8.495 dB 0.000000 Hz	OF I N C		se v 1.00 % ated Result	etup	0 -10 -20 -30 -40 -50 -50 -70 -80 -90					z signal E Iz SA rar	3W,			Manananan
The signal was recalle	4		Fi	ilename	Flat2GBW	.mdx	100 Ch 1, Swg	Start 25 0000 GHz	ALAN DA L		RBW 77 M	tz/VectAvg 772		WWW LAW, ALL	Juli	top 31.0000 (
				- and -	100		Type Carrier In1 dBm	Carrier Out2 dBm	Carrier IBW	ACP Loin1 dBc	ACP LoOut2 dBc	ACP Upin1 dBc	ACP UpOut2 dBc	EVM DistEq21 %		
Calculate S	ave Recall	Defaults		OK	Cancel	Help	ACP+EVM -20.45 dBr	10.21 dBm	2.002 GHz	-29.91 dBc	-29.21 dBc	-26.94 dBc	-26.73 dBc	1.90%		
		4			2											
		*	e.		×											
			e		*											
		÷		9		100	Tr 5 Ch 1 IntTrag	Swp BW+77.24	C EcRe	1 5.02 s SicCa*	(Seri	ALCONTRACTOR				
		4		5	4		3	21		2	22	4				-
							DUT: N4985A-	25, Gain =	30dB		× .					

.

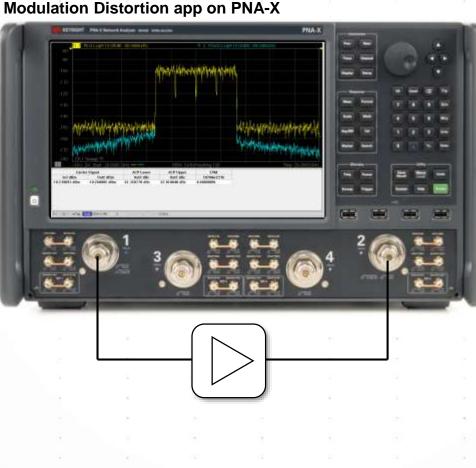
Intro: Target Device / Measurement Challenge Keysight Solution Underlying Technology Measurement Example Summary

Software Product Information

- Software models for PNA-X
 - Supported only for PNA-X B model
 - No other software options required to make Modulation Distortion measurements
 - Options for each frequency range

Model number and description

S930700B Modulation Distortion up to 8.5 GHz
S930701B Modulation Distortion up to 13.5 GHz
S930702B Modulation Distortion up to 26.5 GHz
S930704B Modulation Distortion up to 43.5 GHz
S930705B Modulation Distortion up to 50 GHz
S930707B Modulation Distortion up to 67 GHz


- Supported SG:
 - VXG (M9383B/84B)
 - M9383A
 - PSG + M8190A
 - PSG
 - MXG

Modulation Distortion App on PNA-X with SG

Modulated source such as:

- Software option of PNA-X that characterizes distortion of the device under modulated stimulus conditions
- Simple & easy setup. Measurement setup fully integrated in PNA-X
- Leverages state of the art calibration for the best accuracy
- Single connection for existing VNA measurements and new feature which delivers ACPR, EVM and NPR.
- Lowest residual EVM system in the market

