

Advanced Jitter and Eye-Diagram Analysis

Project Manager / Keysight Taiwan AEO

余宥浚 Jacky Yu

Constructing the Real-Time Eye

Non-ideal Real-Time Eye

What happened to our eye opening?

Non-ideal Real-Time Eye

What happened to our eye opening?

Pause for definitions

A dictionary definition of the verb "jitter":

To make small, quick, jumpy movements.

In the digital design world, jitter is defined as:

The deviation of the significant instances of a signal from their ideal locations in time.

The significant instances for data signals are the transitions (edges)

The ideal locations for the transitions are determined by the time reference (clock)

Single Transition Jitter

We can see from the eye diagram, jitter effects the transitions of the data stream.

Let's take a closer look at a single transition.

Jitter and the Real-Time Eye

It's all about Bit Error Ratio

Noise and Jitter cause data transmission errors in digital systems

These errors are characterized by the Bit Error Ratio (BER) of a serial data link

> BER is the primary measure of the *fidelity* of a link

BER = # Transmission Errors / Total # Transitions

When data rates were low, designers were mainly concerned with functionality (1s and 0s)

With rates > 1 Gbps, the analog nature of signals becomes significant

Noise and jitter affect system BER and the quality of a data link

Measuring Jitter: Bit Error Ratio (BER) Testing

- The only way to directly measure Total Jitter is with a Bit Error Ratio (BER) test.
- Sample at various points along unit interval, directly measure BER at each point. Plot "bathtub" curve.

TJ(BER) = UI - W

Advanced Jitter Analysis with Real-time Oscilloscopes

JITTER AND TIME INTERVAL ERROR (TIE)

(a) Clock Reference

On an oscilloscope we monitor the waveform transitions and note the jitter at each transition point. This is called the <u>Time</u> Interval Error (TIE) record.

Measures total jitter of the <u>acquisition</u>. The more transitions you measure, the greater TIE will become.

Waveform transitions deviate from expected transition time

Generate Time Interval Error (TIE) by measuring transitions versus reference clock

Engineers Never Stop Learning

ADVANCED JITTER ANALYSIS WITH REAL-TIME OSCILLOSCOPES

Agenda

- Review of Jitter Decomposition
- Assumptions and Limitations
- Spectral versus Fail Fit Method
- Advanced Jitter Analysis with Crosstalk Removal Tool
- Scope Random Jitter Removal from Jitter Analysis
- Other Tools to consider for Jitter Analysis
- Summary

Jitter Components

Keysight Territory Turbo Program

Key Assumptions

Total Jitter at a BER can be predicted by a simple model using 'Deterministic' and 'Random' components.

- Gaussian distribution of random noise
- Stationarity of jitter distribution

Dual Dirac Model – Total Jitter

14

KEYSIGHT

EZJIT Jitter Analysis Suite

For Infiniium Real-Time Oscilloscopes

EZJIT Plus – Advanced Jitter Decomposition

Easy to use
 wizard guides
 you through
 jitter
 measurement
 setup

Fully compatible with Infiniium Software such as Equalization, PrecisionProbe, and InfiniiSim

 Customizable jitter views

Agenda

- Review of Jitter Decomposition
- Assumptions and Limitations
- Spectral vs. Tail Fit Method
- Advanced Jitter Analysis with Crosstalk Removal Tool

- Scope Random Jitter Removal from Jitter Analysis
- Other Tools to Consider for Jitter Analysis
- Summary

Spectral vs. Tail Fit Jitter Decomposition

Random Jitter (RJ) Extraction Methods

RJ Extract Methods	tion	Ra	tionale							time error	, likely to	contain PJ
Spectral		 Speed/Consistency to Past Measurements Accuracy in low Crosstalk or Aperiodic Bounded Uncorrelated Jitter (ABUJ) conditions 								- 2 Manager of the Mark	Nation and the second second	Muniter In
Tail Fit		•	General Accuracy	Purpo / in hię	se gh Cros	stalk o	r ABUJ	condit	ions	1.2 1 0.8 0.6 0.4 0.2 0 0	Histogram Object	A
			6							-0.2	5 10	
						12	5 C				1	
			e)	14	×	143		*			¥.:	:(+
• • • • • •					5							
											*	
			# 7	34	*						10	5
					(e)			*			**	

PJ threshold

Spectral Method – PJ Threshold

KEYSIGHT TECHNOLOGIES

Spectral Method – PJ Threshold

Handling of Different RJ, PJ Spectral Content

or PJ?

Separation occurs as described...

What do you do in this case?

Spectral Method – PJ Threshold

Non-linear Period Jitter (PJ) threshold can help

RJ Bandwidth				
Narrow (Pink)	Y			
Wide (White)				
Narrow (Pink)				

21

Wide RJ Bandwidth Analysis

PJ_{DD} = 93.17ps

Narrow RJ Bandwidth Analysis

PJ_{DD} = 27.18ps

Which PJ Threshold or RJ bandwidth analysis do you choose?

Spectral Method – Wide vs. Narrow

Spectral Method with Presence of Crosstalk or ABUJ

(ABUJ = Aperiodic Bounded Uncorrelated Jitter)

Using the slope continuity concept we expect the extrapolated curve to look like this.

The RJ/PJ spectral extraction does not deal with Crosstalk or ABUJ well. The RJ is overestimated severely.

ABUJ: Crosstalk or Ground Bounce

Amplitude interference uncorrelated with data and not periodic in nature.

KEYSIGHT TECHNOLOGIES

Tail Fit Method – Gaussian Extraction

MEASUREMENT DETAIL

1. Fit a Gaussian characteristic to the right and left extremes of the RJ/PJ histogram distribution.

10

12

What Makes Tail Fit Hard

Measurement Detail

KEYSIGHT TECHNOLOGIES

RJ Extraction with Presence of Crosstalk (ABUJ)

SPECTRAL VS. TAIL FIT EXTRACTION

27

Analyze the bathtub plot with both RJ extraction modes to explore the presence of crosstalk or ground bounce.

Agenda

- Review of Jitter Decomposition
- Assumptions and Limitations
- Spectral vs. Tail Fit Method
- Advanced Jitter Analysis with Crosstalk Removal Tool
- Scope Random Jitter Removal from Jitter Analysis
- Other Tools to Consider for Jitter Analysis
- Summary

Jitter Analysis with Crosstalk Removal Tool

Crosstalk Identification

• Which signals are coupling onto your victim?

Crosstalk Quantification

• How much error and jitter do each aggressor add to your victim?

Crosstalk Removal for Jitter Analysis

- What would your signal look without crosstalk present on victim?
- How much jitter margin can be recovered without crosstalk?
- If the signal was failing the jitter spec, can it pass without crosstalk?

Assist in making important design decisions:

- Is it worth reducing crosstalk impact in design?
- Where to improve?

Remove Crosstalk from Victim Signal

Power supply aggressor signal

Original serial data victim signal

Serial data victim signal with crosstalk removed

Features of the N8833A Crosstalk Analysis Application

- 1. Analyze up to four signals (victim or aggressor) at once.
- 2. Remove Near-End Crosstalk (NEXT), Far-End Crosstalk (FEXT) and Power Supply Crosstalk from Victim signal.
- 3. Plot waveform without crosstalk on the scope which can be:
 - Used for eye diagram, <u>jitter decomposition</u>, deembedding, equalization and mask test
 - Saved as a waveform file

- CrossTalk	🔹 ? 🗙						
Setup Wizard							
	<u>garationni</u>						
Victim 🗶 🛛 2 Aggr1 🗶 🗳 Aggr	2 🔀 🕶 Aggr3 🔀 🕀						
Name: Victim Source: Channel 1							
This signal is a Victim	Vertical						
This signal is an Aggressor	🔘 Automatic 🔵 Manual						
Signal Type	Scale 📕 Fine						
Serial Data	8.00000 V/						
Pattern	Offset						
📔 💿 Periodic 🕒 Arbitrary							
🖌 Auto Length	Contributors						
63	Select signals to remove their crosstalk						
	Name Signal Type						
	🖌 2 Aggr1 🛛 Serial Data 💟						
	Aggr2 Power Supply						
	Aggr3 Other						

Crosstalk Analysis Setup

KEYSIGHT TECHNOLOGIES

Power Supply Crosstalk on Victim

No Power Supply Aggressor

With Power Supply Aggressor on the Transmitter PLL

Removing Power Supply Crosstalk from Victim

With Power Supply Crosstalk on the Transmitter PLL

Power Supply Crosstalk Removed with Improvement on Data TIE Trend

Removing Power Supply Crosstalk from Victim

Victim after Power Supply Crosstalk removed

Jitter Improvement Without Power Supply Crosstalk

Analyze Crosstalk & Noise that Contributes to Jitter

- The crosstalk application can remove the ideal, ISI and return "Unknown Crosstalk + Noise" (residual) content.
- Perform further analysis on this residual waveform with measurements such as FFT, markers, etc. to root cause the source of aggressor.

Remove: Ideal + ISI of Victim Show: Only "Unknown Crosstalk + Noise"

Crosstalk + Noise"

Agenda

- Review of Jitter Decomposition
- Assumptions and Limitations
- Spectral vs. Tail Fit Method
- Advanced Jitter Analysis with Crosstalk Removal Tool

- Scope Random Jitter Removal from Jitter Analysis
- Other Tools to Consider for Jitter Analysis
- Summary

Influence of Scope Noise to Jitter Performance

Random jitter will vary with slew rates.

- Every scope has intrinsic vertical noise floor. This vertical noise can translate into horizontal jitter.
 As signal slew rate decreases, vertical noise increases the random jitter.
- 3. Measured random jitter is a function of signal slew rate, scope noise and scope sample clock jitter.

Scope Random Jitter Removal

Calibrate and remove scope random jitter contribution

- Scope RJ calibration is available to remove the contribution of scope noise to measured RJ.
- User is asked to disconnect the signal from Channel to measure the ACV_{rms} noise for the current Vertical setting.

Other Jitter Measurement Considerations

Gain Margin by removal of Scope contribution to RJ

41

Gain margin through scope RJ removal.

Agenda

- Review of Jitter Decomposition
- Assumptions and Limitations
- Spectral vs. Tail Fit Method
- Jitter Analysis with Crosstalk Removal Tool
- Scope Random Jitter Removal from Jitter Analysis

- Other Tools to Consider for Jitter Analysis
- Summary

Jitter Analysis with BER Eye Contour

Estimate Jitter and Eye Opening to various BER level

- Specify the BER eye contours you want the scope to plot.
- Specify which BER contour to highlight in red.

Eye Contour at BER 10⁻¹²

Analyze Jitter at Various Test Points

Jitter Analysis with De-embedding and Equalization

Agenda

- Review of Jitter Decomposition
- Assumptions and Limitations
- Spectral vs. Tail Fit Method
- Jitter Analysis with Crosstalk Removal Tool
- Scope Random Jitter Removal from Jitter Analysis
- Other Tools to Consider for Jitter Analysis
- Summary

Keysight Real-Time Scope Jitter Analysis Tools

N5400A EZJIT Plus for Jitter Analysis and RJ Scope Removal Calibration

N8823A EZJIT Complete for Vertical Noise Analysis

E2688A High-Speed SDA for Reference Clock Recovery and Eye Analysis

N8827A PAM-4 Clock Recovery

N8833A Crosstalk Analysis and Removal Application

N5461A Serial Data Equalization Software

N5465A InfiniiSim De-embedding Software

BER Eye Contour Comes standard with E2688A and N8823A

Jitter Analysis Summary

Spectral vs. Tail Fit for ABUJ (Crosstalk) Jitter Analysis

Use Crosstalk Removal Tool to Recover Jitter Margins

BER Eye Contour, De-embedding and Equalization for Jitter Analysis

