

Network Analysis

是德科技專案經理

Keven Chang

Agenda

- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Transmit Receive Design Challenges

End goal: maximize link budget, fidelity & efficiency

Why Do We Need to Test Components?

 Verify specifications of "building blocks" for more complex RF systems

- Ensure distortion less transmission of communications signals
 - Linear: constant amplitude, linear phase / constant group delay
 - Nonlinear: harmonics, intermodulation, compression, X-parameters
- Ensure good match when absorbing power (e.g., an antenna)

The Need for Both Magnitude and Phase

- 1. Complete characterization of linear networks
- 2. Complex impedance needed to design matching circuits

3. Complex values needed for device modeling

6. X-parameter (nonlinear) characterization

Pre-distortion

Mixer Measurement is simplified with UI

SUPPORTS SINGLE AND DUAL STAGE CONVERTERS.

Sweep	Power	Mixer Frequency	Mixer Power	Mixer Setup			0
Conve	rter Stag	es: 2 •	F	lardware Configura Port 3: Thru	ation	Add Source	
Conve	erter Mod	el: Single Stage	F	Port 4: Thru		Path Configuration	
Port	: 1	- X	1 v 1 v	->-		Port 2 •	
					\times		
			LO1: M	 ⟨G +	LO2: Not contro	olled •	
Cauco		beal		OK	Canaal	Apply	lo

Agenda

- RF/Microwave Design Challenges
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

RF Energy Transmission

Transmission Line Basics

- Low Frequencies
 - Wavelengths >> wire length
 - Current (I) travels down wires easily for efficient power transmission
 - Measured voltage and current not dependent on position along wire

- High Frequencies
 - Wavelength ~ or << length of transmission medium
 - Need transmission lines for efficient power transmission
 - Matching to characteristic impedance (Zo) is very important for low reflection and maximum power transfer
 - Measured envelope voltage dependent on position along line

Transmission line Z_o

- Z_o determines relationship between voltage and current waves
- Z_o is a function of physical dimensions and ε_r
- Z_o is usually a real impedance (e.g. 50 or 75 ohms)

10

Component Test Fundamentals

High-frequency Device Characterization

Reflection Parameters

Smith Chart Review

 $\rho_{L} \Phi$

Characterizing Unknown Devices

USING PARAMETERS (H, Y, Z, S) TO CHARACTERIZE DEVICES

- Gives linear behavioral model of our device
- Measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits)
- Compute device parameters from measured data
- Predict circuit performance under any source and load conditions

 $\begin{array}{ll} \underline{\textit{H-parameters}} & \underline{\textit{Y-parameters}} \\ V_1 = h_{11}I_1 + h_{12}V_2 & I_1 = y_{11}V_1 + y_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 & I_2 = y_{21}V_1 + y_{22}V_2 \\ (Hybrid) & (Admittance) \end{array}$

 $\frac{Z - parameters}{V_1 = Z_{11}I_1 + Z_{12}I_2}$ $V_2 = Z_{21}I_1 + Z_{22}I_2$ (Impedance)

14

 $h_{11} = \frac{V_1}{I_1} \Big|_{V_2=0}$ (1) $h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$ (1)

(requires short circuit)

(requires open circuit)

Why Use Scattering, S-Parameters?

- Relatively easy to obtain at high frequencies
 - Measure voltage traveling waves with a vector network analyzer
 - Don't need shorts/opens (can cause active devices to oscillate or self-destruct)
- Relate to familiar measurements (gain, loss, reflection coefficient ...)
- Can cascade S-parameters of multiple devices to predict system performance
- Can compute H-, Y-, or Z-parameters from S-parameters if desired
- Can easily import and use S-parameter files in electronic-simulation tools

Measuring S-Parameters

Equating S-Parameters With Common Measurement Terms

 S_{11} = forward reflection coefficient *(input match)* S_{22} = reverse reflection coefficient *(output match)* S_{21} = forward transmission coefficient *(gain or loss)* S_{12} = reverse transmission coefficient *(isolation)*

Remember S-parameters are inherently complex, linear quantities – however, we often express them in a log-magnitude format

Agenda

- RF/Microwave Design Challenges
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Generalized Network Analyzer Block Diagram

FORWARD MEASUREMENTS SHOWN

Component Test Fundamentals

Source

Source stimulus can sweep frequency or power or phase

 Modern NAs may have the option for a second internal source and/or the ability to control external source

Used for driving differential devices Can control an internal or external source as a local oscillator (LO) signal for mixers and converters Useful for mixer measurements like conversion loss, group delay

For more information on converter testing: http://www.keysight.com/upload/cmc_upload/All/PNA_Advances_Converter_Testing.pdf

KEYSIGHT TECHNOLOGIES

Signal Separation

- Measure incident signal for reference
- Separate incident and reflected signal

Directional Coupler & Directivity

 Directivity is a measure of how well a directional coupler or bridge can separate signals moving in opposite directions

Interaction of Directivity with the DUT

(WITHOUT ERROR CORRECTION)

- Provides harmonic / spurious signal rejection
- Improve dynamic range by increasing power, decreasing IF bandwidth, or averaging
- Trade off noise floor and measurement speed

10 MHz

26.5 GHz

Dynamic Range and Accuracy

ERROR DUE TO INTERFERING SIGNAL

VNA Block Diagram Examples

Basic 2 Port

Performance 4 Port

- Access loops & switches
- 2 sources & combiner
- Pulse modulation
- Noise tuner & LNA receiver
- Attenuators
- Bias-T's

Processor / Display

- Markers
- Limit lines
- Pass/fail indicators
- Linear/log formats
- Grid/polar/Smith charts
- Time-domain transform
- Trace math

Multiport Measurement Architectures

Application Examples

- RF front end modules / antenna switch modules
- Channel measurements of MIMO antennas
- Interconnects (ex. cables, connectors)
- General-purpose multiport devices

PXI Multiport VNA

PXI Multi-site VNA

Key Features

V

- True multiport VNA with independent modules
- Improved throughput
- High performance without external switches
- Full N-port correction
- Reconfigurable to multiport or multisite

Agenda

- RF/Microwave Design Challenges
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Bandpass Filter four S-Parameters

Linear Versus Nonlinear Behavior

Linear behavior:

Input and output frequencies are the same (no additional frequencies created)

Output frequency only undergoes magnitude and phase change

Nonlinear behavior:

Output frequency may undergo frequency shift (e.g. with mixers) Additional frequencies created (harmonics, intermodulation)

For more information on linear vs. non-linear basics: http://literature.cdn.keysight.com/litweb/pdf/5965-7917E.pdf

Component Test Fundamentals

Gain Compression

- Parameter to define the transition between the linear and nonlinear region of an active device.
- The compression point is observed as x dB drop in the gain with VNA's power sweep.

Time vs. Frequency Domain

S11 RESPONSE OF SEMIRIGID COAX CABLE

- Why time domain?
 - Locate faults
 - Identify passive or inductive circuit elements
 - Identify and remove unwanted fixture responses
 - And more...

For more information on time domain basics: http://literature.cdn.keysight.com/litweb/pdf/5989-5723EN.pdf?id=923465

Agenda

- RF/Microwave Design Challenges
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

The Need For Calibration

- Why do we have to calibrate?
 - It is impossible to make perfect hardware
 - It would be extremely difficult and expensive to make hardware good enough to entirely eliminate the need for error correction
- How do we get accuracy?
 - With vector-error-corrected calibration
 - Not the same as the yearly instrument calibration
- What does calibration do for us?
 - Removes the largest contributor to measurement uncertainty: systematic errors
 - Provides best picture of true performance of DUT

Measurement Error Modeling

Systematic Errors

- Due to imperfections in the analyzer and test setup
- Assumed to be time invariant (predictable)
- Generally, are largest sources or error

Random Errors

- Vary with time in random fashion (unpredictable)
- Main contributors: instrument noise, switch and connector repeatability

Drift Errors

- Due to system performance changing after a calibration has been done
- Primarily caused by temperature variation

Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

Types of Error Correction

Response (normalization)

- Simple to perform
- Only corrects for tracking (frequency response) errors
- Stores reference trace in memory, then does data divided by memory

Vector

- Requires more calibration standards
- Requires an analyzer that can measure phase
- Accounts for all major sources of systematic error

Available Standards

thru

Mechanical short, open, load, thru (SOLT)

Electronically switched arbitrary know impedances

Reflection: One-Port Vector Error Model

- To solve for error terms, we measure 3 standards to generate 3 equations and 3 unknowns
 - Assumes good termination at port two if testing two-port devices
 - If using port two of NA and DUT reverse isolation is low (e.g., filter passband):
 - Assumption of good termination is not valid
 - Two-port error correction yields better results

$$\begin{split} & \mathsf{E}_{\mathsf{D}} = \mathsf{Directivity} \\ & \mathsf{E}_{\mathsf{RT}} = \mathsf{Reflection\ tracking} \\ & \mathsf{E}_{\mathsf{S}} = \mathsf{Source\ Match} \\ & \mathsf{S11}_{\mathsf{M}} = \mathsf{Measured} \\ & \mathsf{S11}_{\mathsf{A}} = \mathsf{Actual} \end{split}$$

 $S_{11M} = E_D + E_{RT}$

Two Port 12-term Error Model Forward model

Ex Port 1 Port 2 S_{21A} ETT a₁ S_{11A} S22 E ERT S₁₂ $E_D = fwd directivity$ EL = fwd load match E_{TT} = fwd transmission tracking Es = fwd source match = fwd reflection tracking ERT

- $E_X =$ fwd isolation
- $E_{L'}$ = rev load match
- $E_{S'}$ = rev source match $E_{RT'}$ = rev reflection tracking

= rev directivity

En

KEYSIGH

- $E_{TT'}$ = rev transmission tracking $E_{X'} = rev$ isolation
- Each actual S-parameter is a function of all four measured S-parameters
- Analyzer must make forward and reverse sweep to update any one S-parameter
- Luckily, you don't need to know these equations to use a network analyzer
- Crosstalk term, in most cases is not used

$$S_{11A} = \frac{S_{11N} \cdot (1 + S_{22N} \cdot ESR) - ELF \cdot S_{21N} \cdot S_{12N}}{(1 + S_{11N} \cdot ESF)(1 + S_{22N} \cdot ESR) - ELF \cdot ELR \cdot S_{21N} \cdot S_{12N}}$$

$$S_{21A} = \frac{S_{21N} \cdot (1 + S_{22N} \cdot [ESR - ELF])}{(1 + S_{11N} \cdot ESF)(1 + S_{22N} \cdot ESR) - ELF \cdot ELR \cdot S_{21N} \cdot S_{12N}}$$

$$S_{12A} = \frac{S_{12N} \cdot (1 + S_{11N} \cdot [ESF - ELR])}{(1 + S_{11N} \cdot ESF)(1 + S_{22N} \cdot ESR) - ELF \cdot ELR \cdot S_{21N} \cdot S_{12N}}$$

$$S_{22A} = \frac{S_{22N} \cdot \left(1 + S_{11N} \cdot ESF\right) - ELR \cdot S_{21N} \cdot S_{12N}}{\left(1 + S_{11N} \cdot ESF\right) \left(1 + S_{22N} \cdot ESR\right) - ELF \cdot ELR \cdot S_{21N} \cdot S_{12N}}$$

where a normalized S-parameter is defined as

 $S_{11N} = \frac{S_{11M} - EDF}{FPF}, \quad S_{21N} = \frac{S_{21M} - EXF}{FTF}, \quad S_{12N} = \frac{S_{12M} - EXR}{FTR}, \quad S_{22N} = \frac{S_{22M} - EDR}{FRR}$

Significance of Calibration

TYPES OF CALIBRATION

UNCORRECTED

- Convenient
- Generally not accurate
- No errors removed

- Easy to perform
- Use when highest accuracy is not required
- Removes frequency response error

ENHANCED RESPONSE

- Combines response and 1-port
- Corrects source match for transmission measurements

٠

1-PORT

SHORT	
OPEN	
LOAD	

DUT

- For reflection measurements
- Need good termination for high accuracy with 2-port devices
- Removes these errors:
 - Directivity
 - Source match
 - Reflection tracking

FULL 2-PORT

SHORT		SHORT
OPEN		OPEN
LOAD		LOAD

Defined Thru or Unknown Thru

- Highest accuracy
- Removes these errors:
 - Directivity
 - Source/load match
 - Reflection tracking
 - Transmission tracking
 - Crosstalk (limited by noise)

Using Known Standards to Correct for Systematic Errors

Response calibration (normalization)

- Only one systematic error term measured
- Reflection tracking
- 1-port calibration (reflection measurements)
 - Only three systematic error terms measured
 - Directivity, source match, and reflection tracking

• Full two-port calibration (reflection and transmission measurements)

- Twelve systematic error terms measured
- 10 measurements on four known standards (SOLT)
- 7 measurements using Unknown Thru; 4 measurements using QSOLT

Standards defined in cal kit definition file

Network analyzer contains standard cal kit definitions

CAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT USED!

User-built standards must be characterized and entered into user cal-kit **KEYSIGHT** TECHNOLOGIES

VNA showing Band Pass Filter

UNCALIBRATED, RESPONSE CAL AND FULL 2 PORT CAL

Measuring filter insertion loss

Vector Network Analyzers Product Portfolio

Handł	140	Modular VNA			Benchtop VNA			Accessories				
FieldF Carry pro 30 k to 50	Fox ecision with you 0 GHz	PX (Ms Hig Up On (Ms Driv Up t Broade	Performano beneformano to 9 GHz, max e-slot PXI V 37xA) re down the c to 26.5 GHz, m st Pric	ce VNA e PXI VNA c 24-ports WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	PNA Read 300 k E D 5 Tmanco	to 1.5 THz NA rive down the Hz to 20 GHz	e cost of test	Cal Up t Acc Swit	kits (Mec o 120 GHz cessories ich, Coupled wer mete	ch., E-Cal)	, tc.	
		2		Softwar	e Applio	cations	a 6 5 5		4	9 5	59 12	
			Ease-of-use, fundamental/advanced applications Common VNA software platform Flexibility in license types								*	
		÷	-	30	18	-		-	3	8		
								*		8		
						÷.			3	2		
		2			25	÷);						
				Co	omponent Tes	t Fundamenta	IS	-				

Network Analyzer Measurement Resources

- Keysight RF and Digital Monthly Webcast Series <u>www.keysight.com/find/webcastseries</u>
 - Live and On Demand Viewing
 - Register for Future Webcasts
- Keysight RF Learning Center <u>www.keysight.com/find/klcrf</u>
 - Webcast Recordings
 - Application Notes
 - Understanding the Fundamentals of Network Analysis

KEYSIGHT TECHNOLOGIES