IBIS AMI Modeling Solution

WU Jiarui

2019.10.22

1.00411

Application Engineer/ Keysight Technologies

Agenda

- WHY we need IBIS AMI?
- WHAT is IBIS AMI?
- HOW to model IBIS AMI?
- Examples
- Summary

WHY we need IBIS AMI?

HSD Design Challenge

- So many standards are existing...
 - PCIe gen3/4, USB3.2, SAS, SATA, HDMI 2.1, Display Port and 100GbE PAM4...
 - DDR5 equalization
- Signal verification at RX input is not sufficient
 - RX input signal is improved by CTLE/DFE and CDR
- Data Rate is increasing, over10Gpbs is common even in consumer products
 Xtalk , VIA design ...

Simulation is the best way Model is needed

Keysight IBIS AMI Modeling Solution

WHY we need IBIS AMI?

Modeling Challenge

- Chip Vender
 - Quantity of products, updating rapidly
 - High cost and long period of hardware test board
 - High requirements for modeling engineer: need knowledge of circuit design, signal processing, signal integrity as well as scripting
 - Need to guarantee accuracy of each model
 - Vendors with NO experience in AMI modeling are spending <u>6-12 months</u> to come up with first-generation models
- Chip User
 - Higher design difficulty requires HSD engineer to test channel performance with consideration of real chip behavior during design flow
 - Have to wait a LONG time before accurate AMI models are released

WHY we need IBIS AMI?

SerDes Models

- Traditional Models
 - SPICE Model: include transistor level structure and specific processing tech

IBIS AMI Model

Defined since IBIS 5.0

- Include too much valuable info
- slow simulation speed, especially for increasing complexity
- IBIS Model: Define V-I and V-t curve of TX/RX
 Cannot include complex equalization algorithm

• Note: IBIS 开放论坛制定IBIS相关的协议标准

<u>http://ibis.org/</u>

Sub-gigabit/s yesterday

Multigigabit/s today

5

Agenda

- WHY we need IBIS AMI?
- WHAT is IBIS AMI?
- HOW to model IBIS AMI?
- Examples
- Summary

WHAT is IBIS AMI?

WHAT is IBIS AMI Model?

- .ibs file: a model for digital buffer devices including Model, Pin, Package (Pin Parasitic), EBD, etc.. :
 - Define **Tx** behavior except complex equalization by : Output voltage, Resistor, Switching Edge, Parasitic...
 - Define Rx behavior except complex equalization by : Input Resistor, Parasitic...

• .ami file:

- [Reserved_Parameters]
 - Init_Returns_Impluse
 - GetWave_Exists
 - Tx_Jitter, Rx_Clock_PDF, etc.
- [Model_Specific] to pass editable parameters (e.g. for EQ) to EDA tool

• .dll /so file (Windows/Linux): Complied algorithmic file

IBIS AMI Simulation Example

Keysight IBIS AMI Modeling Solution

KEYSIGHT TECHNOLOGIES

11

Frequency response compensation of Channel

- Signal quality degrade by channel loss at high frequency region
- To compensate that, apply DeEmphasis in TX and CTLE in RX

USB电缆

SAS电缆

TX Equalizer

De-Emphasis

• Boost signal strength around high frequency range

VCVS SRC1 G=1/(1+0.226)

T=1/5G

G=-0.226/(1+0.226)

加法

• Can be modeled by delay + Gain

延迟器+Gain

Gain

13

高频分量得到增强

RX Equalizer

CTLE

KEYSIGH1

ECHNOLOGIES

- CTLE(Continuous Time Linear Equalizer) is AMP with Analog Filter
 CTLE can be modeled by transfer function (Poles/Zeros)
 - Design Guide -> USB3 -> Interconnect Models -> Receiver Equalizer -> CTLE Equalizer Simulation Vout SRC2 Vac=polar(1,0) V \sim Freq=freq CTLE传递函数 긑 VCVS_PZR USB电缆频率特性 SRC1 Poles=list(1,wp1,0,wp2,0) Zeros=list(1,wz,0) ADS Scale=0.667*wp1*wp2/wz 2. Pole/Zero VAR Var Eon VAR1 <u>'</u>Q dB(Vout) 5 M 2 wz=2*PI*650*1e6 高频分量得 AC wp1=2*PI*1.95*1e9 AC1 -60 ..S(2,1)) wp2=2*PI*5*1e9 -4 Start=0 Stop=20 GHz Step= $\frac{a(s+\alpha_{z1}-j2\pi f_{z1})(s+\alpha_{z1}+j2\pi f_{z1})...}{b(s+\alpha_{p1}-j2\pi f_{p1})(s+\alpha_{p1}+j2\pi f_{p1})...}$ H(s) =1E8 1Ė9 1E10 2E10 freq, Hz $Poles = list(b, \alpha_{p1}, f_{p1}, ..., \alpha_{pm}, f_{pm})$ $\operatorname{Zeros} = \operatorname{list}(a, \alpha_{z1}, f_{z1}, \dots, \alpha_{zn}, f_{zn})$

Keysight IBIS AMI Modeling Solution

14

Remove ISI

DFE

• DFE remove ISIs which are still remaining in output signal of CTLE

KEYSIGHT TECHNOLOGIES

Keysight IBIS AMI Modeling Solution

15

ADS TX/RX model

SIMULATION WITH CHANNEL

measurement	Diff_Probe1.Summary		
Level1	0.000		
Level0	0.000		
Height	0.000		
Width	0.000		

measurement	Eye_Probe1.Summary		
Level1 Level0 Height Width	0.090 -0.089 0.052 1.016E-10		

measurement	Eye_Probe1.Summary		
Level1 Level0 Height Width	0.089 -0.089 0.082 1.136E-10		

350

Eye width is 10% improved

IBIS AMI Modeling Challenge

- Various Knowledge
 - Circuit Knowledge
 - High speed design simulation ability
 - Scripting ability
- Long development period
 - Period for the first time modeling requires 6~12 months
- High modeling accuracy
 - Repeated verification and testing are quired before model release

Agenda

- WHY we need IBIS AMI?
- WHAT is IBIS AMI?
- HOW to model IBIS AMI?
- Examples
- Summary

SystemVue IBIS AMI Modeling Flow

IBIS AMI Modeling Flow

Transmitter - Architecture

• Step 1-1. Transmitter:

- Output Step/Impulse Response (TimeResponseFIR)
- Gain (Gain)
- Equalizer (FFE/CLTE) (BlindFFE/SDomainIIR/...)
- Can be complex and customized equalization blocks or Import response of equalizer instead

SystemVue

21

Time

CDR

m

 \mathbf{V}

• DFE (BlindDFE or Adaptive DFE): Decision Feedback Eq.

- CDR (CDR): Clock Data Recovery
 - Phase Detector, PLL, VCO
- Clock Time : Extract clock time from clock signal

• Step 1-2. Receiver:

- CTLE (SDomainIIR): Continuous Time Linear Equalizer of or FFE (FFE) Feed Forward Equalizer

IBIS AMI Modeling Flow

Receiver - Architecture

IBIS AMI Modeling Flow

Optional: Simulated or Measured DATA

Step 2-1. Time/Freq. Response of circuit or equalizer: Import measurement or SPICE data
 Use TimeResponseFIR Model to import HSPICE data or measurement data

Step 2-2. customized algorithm: import existing code

- Challenges: Sometimes built-in model does not meet all IBIS AMI modeling requirement
- Solution: User can import C++ code for modeling

KEYSIGHT TECHNOLOGIES

22

IBIS AMI Modeling Flow

Algorithm Verification

Keysight IBIS AMI Modeling Solution

24

IBIS AMI Modeling Flow

Algorithm Verification

IBIS AMI Modeling Flow

Custom Equalization – Code Generation

• Step 4. automatically generating code : (No need for manual compiling)

	Target Configuration		Define Autor	Reserved and natically config	Model Spec ure appropri	ific Paramete ate AMI wrap	ərs - oper
	Target: IBIS Algorithmic	: Modeling Interfa I Reserved Parame	✓ AMI Madel: sv_ami_ctle_dfe_l ✓ N eters AMI Model Specific Parameters	1ode: Single	~		
	Name	Export	Pro	operties			
	DFETaps						
	Alpha						
One-Click AMI Code Generation							
· · · · · · · · ·							
	🧬 🛛 Generate No	w	📑 <u>G</u> lobal Options	OK	Cancel	🎨 <u>H</u> elp	
					40 - 24 -	*	
	· · · · · · ·	14 10	1. 1. A. A. A.				•
			1. A	15	ta at		
KEYSIGHT	a		Keysight IBIS AMI Modeling Solution		4		

IBIS AMI Modeling Flow

Model Validation

- Step 5. Check IBIS AMI Model: Connect corresponding files for IBIS AMI model
 - Among generated files, .ami and .dll files work together with original .ibs
 - Key command lines are required to be extracted from ibis.txt : Find [Algorithmic Model] lines in ibis.txt files of Tx and Rx, copy the 'Executable ...' line to the same position in original .ibs files.

		RxFFE_C	DR_DFE.ami	TxC	FLE_HSPICE.am	li
✓ ▲ AMI_Custom_Tx_Rx_System_JR		RxFFE_C	DR_DFE.ibs	TxC	FLE_HSPICE.ibs	
 build-win64-vs2015 output-vs2015 		RxFFE_C	DR_DFE_x64.dll	S TxC	FLE_HSPICE_x64	4.dll
Release-AMI		RxFFE_C	DR_DFE_x64.pdb	🛃 TxC	FLE_HSPICE_x64	4.pdb
		KxFFE_C	DR_DFE_x64_ibis.t	xt 🛛 🗹 TxC	FLE_HSPICE_x64	4_ibis.txt
14	Е	er er	1073 (B	x		
<pre>52 53 [Algorithmic Model] 54 Executable Windows_cl19. 55 [End Algorithmic Model] 55</pre>	00.24215.1_6	54 TxCTLE_HSPIC	E_x64.dll TxCTLE_HS	PICE.ami		
<pre>96 [Algorithmic Model] 97 Executable Windows_cl19. 98 [End Algorithmic Model]</pre>	00.24215.1_6	4 RxFFE_CDR_DF1	E_x64.dll RxFFE_CDR_	_DFE.ami		8
		· ·			3 F	
EYSIGHT			Keysight IBIS AMI Mo	deling Solution		

KEYSIGH1 FECHNOLOGIES

0.509

-0.509

1.480E-10

0.164

-0.164

27

• Step 6. Verify IBIS AMI Model: Use ADS Channel Simulator to analyze channel performance

through eye diagram or other measurements.

IBIS AMI Modeling Flow

Model Validation

Agenda

- WHY we need IBIS AMI?
- WHAT is IBIS AMI?
- HOW to model IBIS AMI?
- Examples
- Summary

Example 1: USB 3.1

Transceiver of USB 3.1 Gen2, 10 Gbps

KEYSIGHT TECHNOLOGIES

input

PORT=1

Example 1: USB 3.1

Short Channel

Long Channel

Agenda

- WHY we need IBIS AMI?
- WHAT is IBIS AMI?
- HOW to model IBIS AMI?
- Examples
- Summary

Summary

- IBIS-AMI model can remove barrier to simulation
 - Simulation with real TX signal
 - PCIe gen3/4, USB3.2, SAS, SATA, HDMI 2.1, Display Port and 100GbE PAM4
 - Equalized by CTLE/DFE in RX model
 - More accurate modeling by importing time/freq. response
 - To decide repeater use or not
- Channel Simulation by ADS provides an efficient chip-to-chip link simulation including real channel.

Appendix: Learning Resource

- ADS小秘訣 <u>http://www.keysight.com/find/ads_tips</u>
 - 新工程師必讀課程 IBIS AMI 建模 <u>https://community.keysight.com/thread/36876</u>

新入职工程师必读课程 - IBIS AMI 建模(SystemVue+ADS)

由 Jiarui 🔤 于 2019-1-31 提出的问题

🖒 喜欢・0 🛛 💭 评论・0

IBIS AMI建模对芯片设计人员来说具有一定挑战,既要熟悉电路和信号完整性相关知识,又要具备编程能力;并且随着产品的更新换代,需要不断地重新设计,同时保证每个模型的准确度。

对于新入职或初次接触IBIS AMI建模的工程师,可以使用SystemVue的自动化IBIS AMI建模工具,完成Tx/Rx 均衡算法及 Rx 时钟数据恢复等设计及验证,实现自动代码生成,并利用ADS的通道仿真器对生成的IBIS AMI模型进行验证。以下为 IBIS AMI建模流程的必读自学材料。

基础课程: 2017_Q3_AMI_Modeling_Fundamental PDF] ADS SI Q&A 040 How to build AMI models with SystemVue?

进阶课程:

IBIS-AMI Model Application Notes
 Adding Jitter for Tx IBIS-AMI Model in Channel Simulation
 Generic Tx AMI Models

KEYSIGHT TECHNOLOGIES

Thank you