Unimicron

The extraction of effective dielectric material property

Reporter : Darren Shen SBU/Div. : CEO Office/EDA Date : Oct. 22, 2019

Agenda

1. Introduce of Unimicron

- 2.New high accuracy signal transmission line design flow
- 3. The statistical analysis of transmission line parameter variation for material property and physical layout structure.
 4. Material Parameter Extraction.

CONFIDENTIAL

Unimicron

5. Conclusion

Unimicron Technology Corp.

Date Incorporated	Jan. 25, 1990								
Chairman	T. J. Tseng								
Major Stockholder	UMC								
> Employees	13,199 (Unimicron Group Taiwan)(2Q'18)14,309 (Unimicron Group Overseas)*Total 27,508								
Registered Capital	NT\$15.05 Billion								
Products	Printed Circuit Boards, Carrier, IC Burn-in & Testing								

3 CONFIDENTIAL

Manufacturing Site

Oct. 2018

Global Ranking

		HDI			Carrier							
Pople	2017		2018		Donk	2017		2018				
капк	Supplier	Rev.	Supplier	Rev.	капк	Supplier	Rev.	Supplier	Rev.			
1	Unimicron	707	Compeq	898	1	Unimiron	880	Unimicron	970			
2	Compeq	683	ттм	837	2	Ibiden	744	lbiden	788			
3	ттм	635	AT&S	794	3	Semco	721	SEMCO	653			
4	AT&S 620		Unimicron	781	4	Nanya	603	Simmtech (Inc.Eastern)	568			
5	Meiko	319	Tripod	361	5	Kinsus	582	Shinko	562			
6	ксс	280	Meiko	341	6	Shinko	580	Nan Ya PCB	544			
7	Unitech	273	Unitech	319	7	Simmtech	440	Kinsus	535			
8	Tripod	263	Zhen Ding	298	8	Daeduck	290	Daeduck Group	317			
9 Zhen Ding 248		Korea Circuit 288		9	ASE Material	288	ASE Material	281				
10 SEMCO 222		DAP	268	10	Kyocera	257	Kyocera	261				

5

CONFIDENTIAL

*Unimicron includes Subtron sales

Source : Prismark, Q3 2018

Design/Simulation team specialties

6

CONFIDENTIAL

EDA Team, certificates, ISO9001, Conference

7

CONFIDENTIAL

Design Quality Assurance certified by ISO9001

The design of printed circuit boards, HDI BGA and chip carriers. The burn-in and product testing of integrated circuit in packaged form.

Intensive on-the-job training and seminars – Certificates from Cadence APD, Cadence High Speed, MentorGraphics, Unix Systems, Autocad

New high accuracy signal transmission line design flow

The UMTC are provide high accurate PCB product for 5G,AIOT and AI application.

That's why the customer great emphasis on validation of material properties of dielectric constant and loss tangent frequency dependence.

8

CONFIDENTIAL

For next generation high speed signal design, UMTC need to provide frequency dependence Dk/Df & Roughness value to the customer.

The High frequency Double-side measurement system

Anritsu ME7838E 4-port VNA

• The Specification of Probe Pin in Unimicron

PN		Probe	Frequency (GHz)	Туре	Pitch (µm)		
ACP40-A-GSG-150		Air Coplanar Probe	40	GSG	150		
67-A-GSG-150	67-A-GSG-150		67	GSG	150		
I110-A-GSG-100			110	GSG	100		

9

CONFIDENTIAL

Why are obtaining accurate dielectric models so difficult?

• Manufacturers of dielectrics and PCBs provide measurements for dielectric constant and loss tangent typically at one frequency point or at 2-3 points in the best cases. No continuous causal models versus frequency are usually provided. For low-cost dielectrics the measurement frequency may be even not specified at all, which is unfortunate since such dielectrics can be still used for high-speed 10Gb/s interconnects.

• Methods based on TDR and static field solvers do not produce dispersive dielectric models and may be used only at frequencies below 1-3 GHz.

• PCB dielectrics exhibit strong dependency on frequency with dielectric constant and loss tangent changing substantially over the frequency band of multi-gigabit signal spectrum. Only frequency-continuous models can accurately describe such behavior.

Ref: http://www.simberian.com/AppNotes/DesignCon2010_Paper2807.pdf

Glass weave model and physical property

ଌ୳ଌ୦୦ଌ

Resin Matrix

Heat Resistance

08 80 0g

008

- High Tg
- Toughness
- Flammability
- Peel Strength
- Dielectric Properties
- Low Water Absorption

Filler '

80

80

0880

- Heat Resistance
- Low Water Absorption
- High Stiffness
- Heat Dissipation
- Warp Resistance
- Dimensional Stability

11

CONFIDENTIAL

- Low CTE
- Flammability

Fiberglass Cloth

80

8002

08

0880

80

- Dimensional stability
- High Stiffness
- Low CTE
- Warp Resistance
- Flammability

Copper Foil

8001

8001

oß

- Electrical Contact
- Signal Line
- Electrical Grounding
- Heat Dissipation

The statistical analysis of transmission line parameter variation for material property and physical layout structure.

<u>12</u> Confidential

Single-End transmission line

J991 505E_BOT_21NCH 3991 505E_BOT_21NCH 3991 30000 3000 3000

Single-End transmission line

Electrical FEM model

Unimicron

- X-section is perpendicular to trace orientation

14

CONFIDENTIAL

- (a) Top trace width
- (b) Bottom trace width
- (c) Cu thickness
- (d) Trace space
- (e) Upper dielectric thickness
- (f) Lower dielectric thickness

Monte Carlo Simulation for Insertion Loss on IT-150GS

Unimicron

The Sensitivity analysis

Impedance V.S. Insertion Loss for W, T, H, Dk & Df

- + Slope: H1(0.21)≈H2(0.22)>S(0.10)>Df(0.01)
- Slope: W(-0.43)=Dk(-0.44)>T2(-0.11)

16

CONFIDENTIAL

Unimicron

+ Slope: H1(0.002)=H2(0.002)>W(0.00072)

>S(0.00044)>T2(0.00031)

The worst case of IL & Imp corner Variations (Monte Carlo Method)

Area: Dk(68.34%)> H2(11.08%)> H1(9.86%)> W(7.66%)>S(1.20%)>Df(1.03%)>T2(0.83%) **Distribution Range** Layer Stack Up -0.98 6.595 electric_1 -1.00 H1 Thickness_1 94.488 um W 2.8/5 cond -1.02 electric_1 H2 Thickness_2 73.025 um H2 -1.04 Dk dB(SDD12) 0 mi Df -1.06 **Rectangular Shape define** -1.08 (Z min,I.L max) (Z max, I.L max) -1.10 Dk -1.12 -1.14 └─ 82 84 86 88 90 92 94 (Z_Center, I.L_Center) Zdiff (Ohm) (Z max, I.L min) (Z_min,I.L_min)

Unimicron

Z_diff and insertion loss Scenario analysis

Sensitivity and Scenario analysis table

	Dk(10% ↑)	Df(10% 1)	H1+H2 (10% ↑)	H2(10% †)	H1(10% †)	W(10% †)	S(10% †)	T2(10% †)
Z_diff	↓ (5.5%)	X (0.0%)	↑ (5.2%)	↑ (2.6%)	↑ (2.6%)	↓ (5.1%)	↑ (1.3%)	↓ (1.3%)
I.L.	↑ (5.3%)	↑ (5.0%)	↓ (4.1%)	↓ (2.0%)	↓ (2.1%)	↓ (0.9%)	↓ (0.5%)	↓ (0.3%)

Unimicron

The ranking of parameter for Z_diff and I.L.

The ranking of parameter percentage for Z_diff and I.L.

	Dk(10% ↑)	Df(10% ↑)	H2(10% ↑)	H1(10% †)	W(10% ↑)	S(10% ↑)	T2(10% †)
Z_diff	29.8%	0.0%	14.3%	14.3%	28.0%	6.8%	6.8%
I.L.	32.9%	31.2%	12.4%	12.9%	5.9%	2.9%	1.8%

The ranking of parameter for Z_diff and I.L.

	Dk(10% ↑)	Df(10% ↑)	H2(10% †)	H1(10% †)	W(10% ↑)	S(10% ↑)	T2(10% †)
Z_diff	1	6	2	2	3	4	5
I.L.	1	2	3	3	4	5	6

19

CONFIDENTIAL

Weighting Factor vs. insertion loss Plot (frequency trend)

Weighting Factor vs. insertion loss frequency plot

Weighting Factor vs. insertion loss frequency table

Freq\IL_wet	Dk	Df	H2	H1	W	S	T2	Ra
10 Ghz	41.3%	31.1%	10.2%	9.0%	2.4%	1.8%	1.2%	3.0%
28 Ghz	33.8%	38.9%	8.6%	7.8%	1.4%	1.9%	1.4%	6.2%
32 Ghz	35.4%	37.9%	7.6%	6.7%	3.2%	1.4%	1.4%	6.4%
56 Ghz	32.4%	41.2%	6.9%	6.2%	2.2%	1.4%	1.3%	8.2%
112 Ghz	31.6%	43.4%	6.1%	5.4%	2.7%	1.2%	1.3%	8.4%

20

CONFIDENTIAL

Material Parameter Extraction.

Concept of de-embedding method

2-Line Test Coupon Structures for measuring the S-Parameters of the Length L of transmission line with the connector fixture removed.

Fixture with Length 2x

22

CONFIDENTIAL

The algorithm flow of Dk/Df extraction

The criteria of S-para, passivity, causality , convergency tolerance

Unimicron

Import short and long trace S-parameter data

Import short trace S-parameter data

Import long trace S-parameter data

	S-PARAM	1ETERS		- Term			 -	 1	2 . 2 .			•			•	 									+	Tê	erm	•
S_Pa SP1			• \$	Term1 Num=	1		 	Ref	.			•	 			 				•				•		Te	erm2 lum=	2
Start	=0.01 GHZ =43 GHz	+ · · ·		Z=50 (Ohm		 	SNP1																	Ц	Z	=50 (Dhm
Step	=		· · · +		· ·	· ·	 . H	·ile="、	J:\VN	IA\2-	U\U-	EM89	91K\5	051	=_BC)]_5 		H\Da	ta⊢ıl	e#3	s2p		· ·	•	1		· ·	•
· ·					· ·			· ·	•	•		•		•	•	· ·	•		•	•	•	•		•	•		· ·	•
		Meas Eqn	leasEqn leas1																									
		le	ngth_diff=	0.0762			 :				· ·													•				

25

Check short and long trace S-parameter data

from		S	1	
ireq	S1(1,1)	S1(1,2)	S1(2,1)	S1(2,2)
10 00 M Hz	0 000 / 0 000	0.997/-1.702	0 997 / -1 699	0 000 / 0 000
16.72 M Hz	0.000 / 0.000	0.997/-2.746	0.997/-2.746	0.000 / 0.000
23.43 M Hz	0.000 / 0.000	0.996 / -3.789	0.997 / -3.790	0.000 / 0.000
30.15 M Hz	0.000 / 0.000	0.996 / -4.831	0.996 / -4.834	0.000 / 0.000
36.87 M Hz	0.000 / 0.000	0.996 / -5.873	0.996 / -5.878	0.000 / 0.000
43.59 M Hz	0.000 / 0.000	0.995 / -6.915	0.996 / -6.922	0.000 / 0.000
50.30 M Hz	0.000 / 0.000	0.995/-7.957	0.996 / -7.966	0.000 / 0.000
57.02 M Hz	0.000 / 0.000	0.995 / -8.999	0.995 / -9.010	0.000 / 0.000
63.74 M Hz	0.000 / 0.000	0.994 / -10.041	0.995 / -10.054	0.000 / 0.000
70.45 M Hz	0.000 / 0.000	0.994/-11.083	0.995/-11.098	0.000 / 0.000
77.17 M Hz	0.000 / 0.000	0.994 / -12.125	0.994 / -12.141	0.000 / 0.000
83.89 M Hz	0.000 / 0.000	0.994 / -13.167	0.994 / -13.185	0.000 / 0.000
90.61 M Hz	0.000 / 0.000	0.993 / -14.209	0.994 / -14.229	0.000 / 0.000
97.32 M Hz	0.000 / 0.000	0.993 / -15.251	0.994 / -15.273	0.000 / 0.000
104.0 M Hz	0.000 / 0.000	0.993 / -16.292	0.993 / -16.311	0.000 / 0.000
110.8 MHz	0.000 / 0.000	0.993 / -17.332	0.993 / -17.345	0.000 / 0.000
117.5 MHz	0.000 / 0.000	0.992/-18.372	0.993 / -18.380	0.000 / 0.000
124.2 M Hz	0.000 / 0.000	0.992/-19.412	0.992/-19.414	0.000 / 0.000
130.9 M Hz	0.000 / 0.000	0.992/-20.452	0.992/-20.448	0.000 / 0.000
137.6 M Hz	0.000 / 0.000	0.992/-21.493	0.992/-21.482	0.000 / 0.000
144.3 M HZ	0.00070.000	0.9917-22.533	0.9917-22.517	0.00070.000
151.1 MHZ	0.000/0.000	0.9917-23.573	0.9917-23.552	0.000 / 0.000
157.8 M HZ	0.000/0.000	0.9917-24.608	0.991/-24.590	0.000 / 0.000
164.5 M HZ	0.00070.000	0.000 / 26.677	0.991/-25.628	0.000 / 0.000
1/1.2 M HZ	0.00070.000	0.9907-26.677	0.9907-26.666	0.00070.000

De-embeded Method

De-embeded long and short trace S-parameter data (1)

De-embeded long short trace S-parameter data (2)

S-PARAMETERS	
S_Param SP1 Start=0.05 GHz	TermG2 TermG1 Num=1 Demmbed2 SnP Demmbed2 SnP Demmbed2 TermB2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermG2 TermB3
Stop=43 GHz Step=0.05 GHz CalcGroupDelay=	Z=50 Ohm SNP8 SNP1 SNP7 File="1.JVNA\2-U\12IAD5TESTUSU9E=EBOV_QMX2HUBIMBB6ESTUSQ0SE_BOT_2INCH\DataFile#1-2.s2p" PortMappingType=Standard PortMappingType=Standard
	TermG3 TermG4 Num=3 Num=3 De Embed2 SnP De Embed2 TermG4 TermS4 TermS
	Z=50 Ohm_SNipg SnP16 SNip10 L C Control File="U:VNAV2-UU-EM891K/50SE_B0T_2INCH/DataFile#1-2.s2p" File="U:VNAV2-UU-EM891K/50SE_B0T_2INCH/DataFile#1-2.s2p"
	Portiniapping iype=Standard PortMapping iype=Standard

Unimicron

Dk extraction result

The Schematic of Circuit Simulation

			·
	Disection Var VA P		
	Determine 1988 46 Wolfe	Term	1
	MLSUBSTRATE3	Torma	
	Subst1	- $ -$	
		Tareo obm Subst="Subst1"	_
	H[1]=270.2 um Bbase= En VAP4		н
·	TanD[1]=mytand Dpeaks= CE=5 (o) Invtreg=550 194 (o)	₩=61 mil	
	T[1]=15.5 um		
	. Cond[1]=cond*1e7		
	Er[2]=ER	ReuseRLGC=no	
	H[2]=129.5 um	W File=	ſ.,
	TanDI21=mytand VAR6 VAR5	· · · · · · · · · · · · · · · · · · ·	1
· ·	T[2]=15.5 um cond=5.8 highfreq=14.9509 {o}		÷.,
	Cond[2]=cond*1e7		
	. TT3]=15.5 um		
		GOAL GOAL	
•			· .
	LaverType[2]≐signal	Goal Goal	1
	1 aver[vpei3]=ground		
		Expr="line 10inch-diff" - Expr="hbase diff"	
		Similaritana cari spira si su	
		Wainht-1 Weinht-1	1
•		AAMBin-1	•

The Schematic of Circuit Simulation

Unimicron

Df and Phase extraction result

freq, GHz

Strip line roughness model (Single-End)

Dk and Df extraction result

	Dk	C D	[Roughness (um)	W (mil)	T (um)	Td (um)	Ll (um)	H1 (um)	L2 (um)	H2 (um)	L3 (um)	Dk	Df	Freq	Dk_err	Df err	Vendor
	4.08	827 0.0	1812	0.34153	_								3.33	0.013	2	22.60%	39.38%	LM 0550
100	3.959	996 0.0	1633	0.340716	-							• •	3.9	0.012	10	1.54%	36.08%	1.01168-0
1000	3.849	922 0.0	1673	0.270181					-				4.2	0.01	1	-8.35%	67.30%	NPS%450U01D
Lange State	3.844	498 0.0	1528	0.33228									4.2	0.012	10	-8.45%	27.33%	10 8665
	3.765	551 0	0117	0.261575									4.1	0.007	10	-8.16%	67.14%	3040-12012
	3.763	324 0.0	1474	0.281086	•								3.8	0.012	10	-0.97%	22.83%	CM-020C
	3.964	401 0.0	2009	0.274224									4	0.015	10	-0.90%	33.93%	5W 3700
100,000	4.426	594 0.0	1962	0.261186									3.9	0.01	10	13.51%	96.20%	11-1-120-071
Could B	1 2					•						•••	4.2	0.007	1	-100.00%	-100.00%	NPG-171
	4.093	395 0.0	1145	0.278182		• •			-				3.9	0.008	10	4.97%	43.13%	cM 520
	3.675	557 0.0	1293	0.280686								•••	4	0.008	10	-8.11%	61.63%	7.16654
	Extraction result																	

Unimicron

Frequency dependence of Dk & Dk Properties

32

CONFIDENTIAL

Dk v.s. Frequency Plot

Df v.s. Frequency Plot

Conclusion

- 1. According to the structure of layer stack up and the dielectric material coefficient provided by the material supplier as the initial value, we have been able to give effective Dk, Df and surface roughness parameters from the return loss and insertion loss measurement by vector network analyzer.
- 2. The equivalent Dk/Df transmission line extraction algorithm is a solution developed by bilateral collaboration of UMTC and Keysight to meet the needs of low-loss materials and high-speed transmission lines for customers' 5G NR products.
- 3. The electrical model of the dielectric layer mixed glass fiber will be further studied in order to solve the problem of signal integrity skew of the 5G high-speed transmission line of the PCB board.

Thank you for your attention!!!

