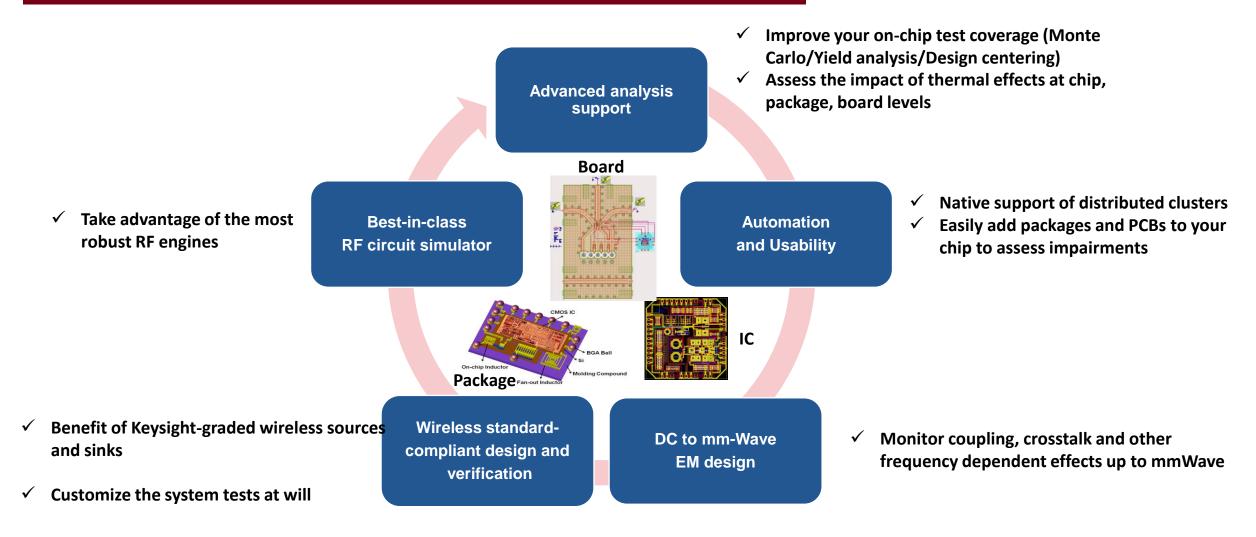
PathWave RFIC Design (GoldenGate) 2020

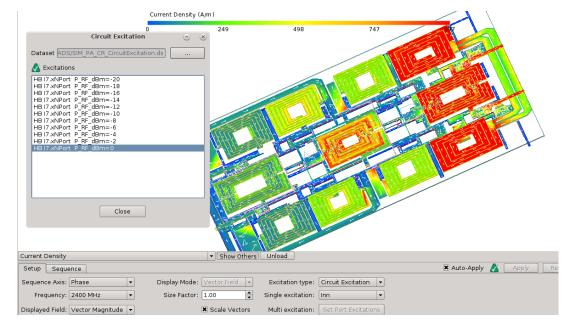
CHEN, Jason

Oct. 2019


Application Engineer

......

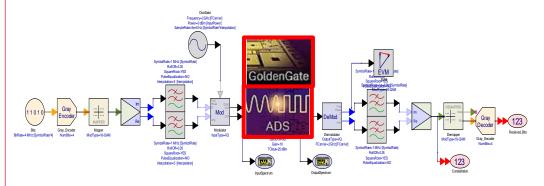
Keysight EEsof RFIC solutions


FROM TRANSISTORS TO CONNECTORS

Analyze your EM circuit under real conditions

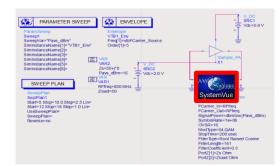
- Challenge:
 - At high frequencies, coupling is one of the most common problems designers face
 - But EM coupling is often analyzed without any non-linear devices and them improper loading
- GoldenGate 2020 now allows interaction with RFPro to look at current densities that correspond to your design under operating conditions

Look at current densities at the harmonic or power you want

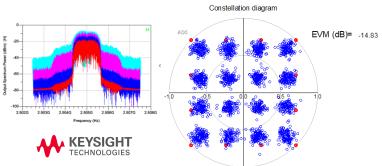


Design with modulated signals

DIFFERENT PLATFORMS BUT A COMMON NEED


System architecture engineers needs

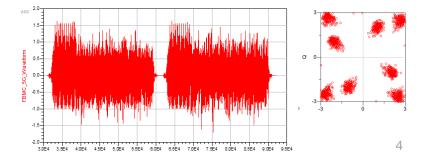
- Check RF impairments without loss of speed
- Be proactive on the RF impairments with digital processing
- Want to stay inside a system platform



RF designer needs

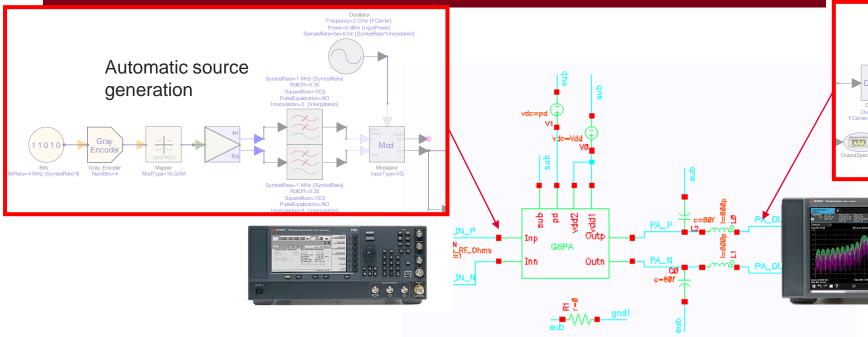
- Quickly test their RF IPs on the latest wireless standards
- Do not want to understand fully the standards
- Want to stay inside Cadence Virtuoso or Keysight ADS
- Want to avoid overdesign due to IP3/IP5... approximations

Solution : Bring circuit accuracy inside SystemVue Solution : Bring SystemVue libraries inside Cadence



Same sources, same outputs !

 EVM Peak
 EVM RMS
 IQ Offset (dB20)
 Phase Error Peak (°)
 Phase Error RMS(°)


 28.086
 8.676
 -51.79
 -9.313
 2.017

PathWave RFIC Design (GoldenGate) 2020

RF designers workflow : Virtual Testbenches

BRING SYSTEMVUE INSIDE ADS OR VIRTUOSO

ADS/GoldenGate can use SystemVue Virtual Testbenches (VTB) to automatically

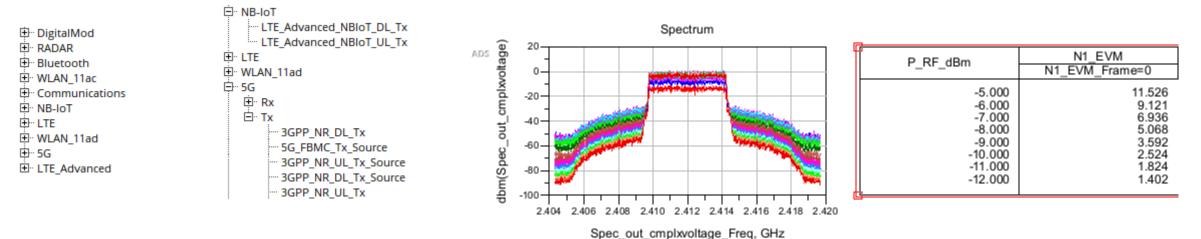
- Generate a waveform compliant with wireless standards
- Demodulate the signal to produce system figures of merits (EVM, CCDF,...)

Keysight Fast Envelope algorithms speed up simulations by orders of magnitude vs. classical Envelope

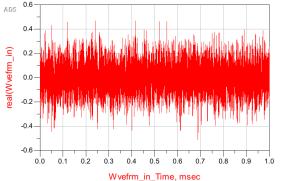
VTBs boast traceability of the tests used (bandwidth, modulation scheme, source power) than classical methods using files do not offer.

5G NR, Verizon, (U)F-OFDM, FBMC 3GPP / LTE, LTE Advanced 802.11 a/b/n/ac/ad/ah 802.15.3c, 802.15.4, 802.16e Bluetooth (Basic, Enhanced and BLE) GNSS/GPS DVB-x2

Automatic


demodulation

KEYSIGHT TECHNOLOGIES

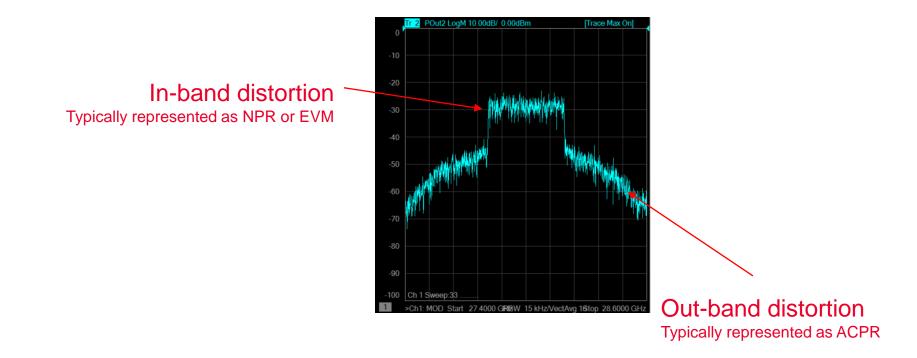

Modulated signals update in GoldenGate 2020

THE LATEST STANDARDS ARE EMBEDDED !

• No need to look for a file or install something else, the modulated signals are one toggle away

EVM and Output Spectrum of a PA under 5GNR conditions

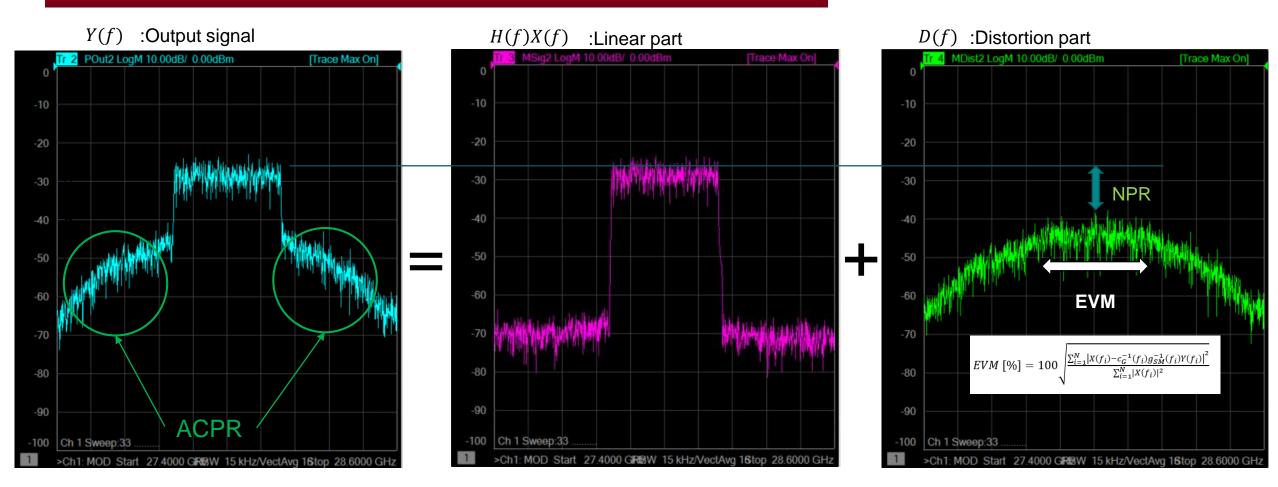
IP analyses assume a couple of sines. 5GNR waveform [PAPR > 15 dB] is far from being a sine !



Distortion EVM

BRING A PNA-X INSIDE VIRTUOSO

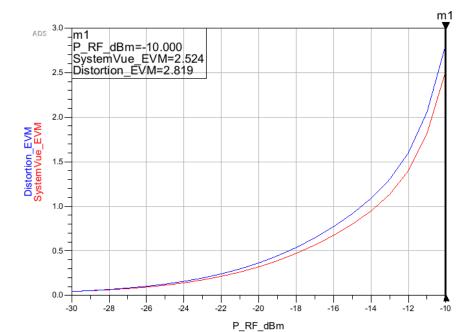
Output Signal Spectrum


- If you have your own IQ files, computing an EVM is a challenge
 - What are the bandwidth/numerology/number of subcarriers/...?
 - Spectral regrowth (ACPR) does not give all the needed insights

Underlying Technology

COMPUTING FIGURE OF MERITS

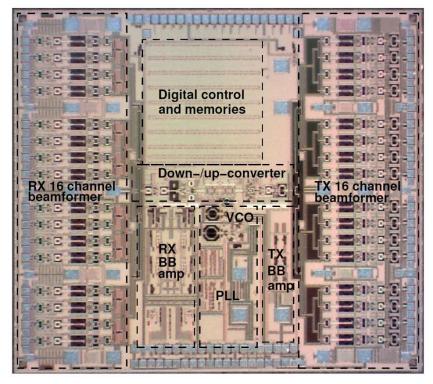
• EVM computed from time domain and frequency domain are mathematically equivalent (Parseval's theorem)

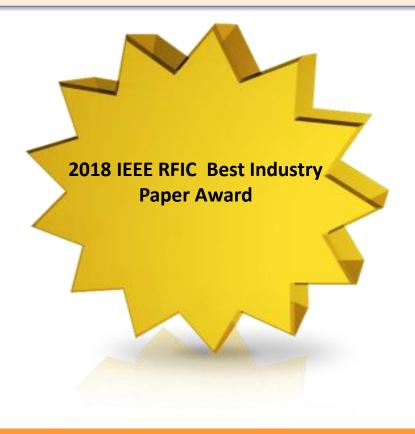


Distortion EVM inside GoldenGate

- Available as a performance (percent or dB) inside GoldenGate
 - Allows sweeps, MonteCarlo, LoadPull, integration into ADE-XL or Maestro
 - Extended to devices with frequency translation
 - Complements VTB reference EVMs

Dist_EVM_pct			Add	Ch
distortion_evm_pct("VTB_5	"PA_OUT",1,0,0,10e6)			
In	put	Input	Output Output	Band
SO	urce	harmonic	source harmonic	width


5GNR PA EVM SystemVue Distortion Less than 0.3% diff



Designing an Award-Winning mmWave RFIC: Experiences and Insights

<u>Erik Öjefors</u>, Mikael Andreasson, Torgil Kjellberg, Håkan Berg, Lars Aspemyr, Richard Nilsson, Klas Brink, Robin Dahlbäck, Dapeng Wu, Kristoffer Sjögren and Mats Carlsson

802.11ad 60-GHz RF transceiver chip

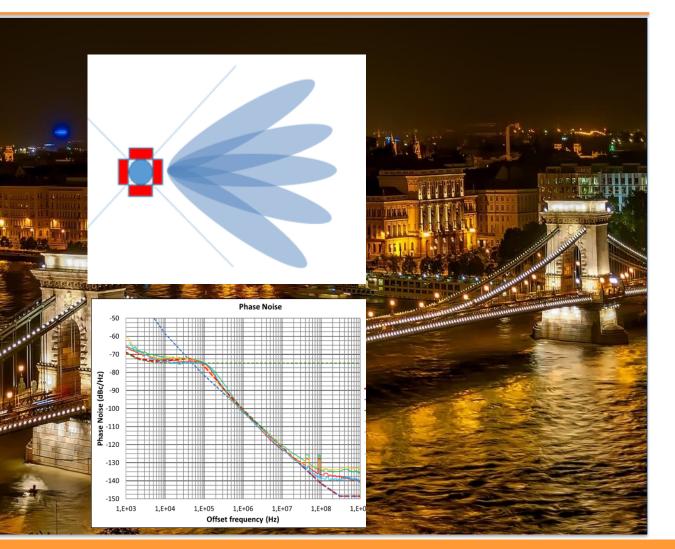
SIVERS

Outline

- Introduction of Sivers IMA AB
- Application of the 802.11ad standard for fixed-wireless access and backhaul
 - Key performance parameters and design challenges
- Overview of the Keysight tools used in the design flow
 - SystemVue, GoldenGate, and VTBs
- Chip design and simulation
 - Architecture and key circuit blocks, beamformer, LNA, PA and VCO
 - Modulated signals and EVM performance on transistor level, early feedback to system simulation
- Measurements and comparison to simulations
 - Focus on modulated signals and EVM performance
 - Link between simulations and measurements
- Conclusion and comparison to state-of-the-art

Sivers IMA Holding AB in Short

- Sivers IMA delivers key technology for multi-Gbit/s fiber and wireless networks
- HQ in Stockholm, offices in Glasgow and Gothenburg both with sales, R&D and Lab
- 100 employees and 15 consultants
- Listed at Nasdaq First North stock exchange in Stockholm

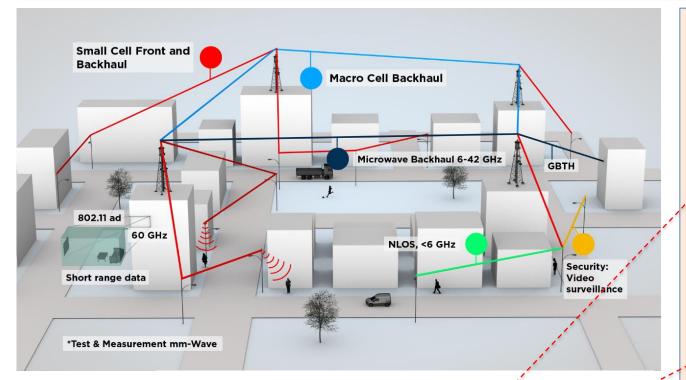


SIVERS MA

The Road to Gigabit Speeds Goes Via mmWave

KEY RF COMPETENCE:

- mmWave
 - 802.11ad/ay and 5G
- Phased array antennas
- Beam steering/ Beam forming
- Low phase-noise synthesizers

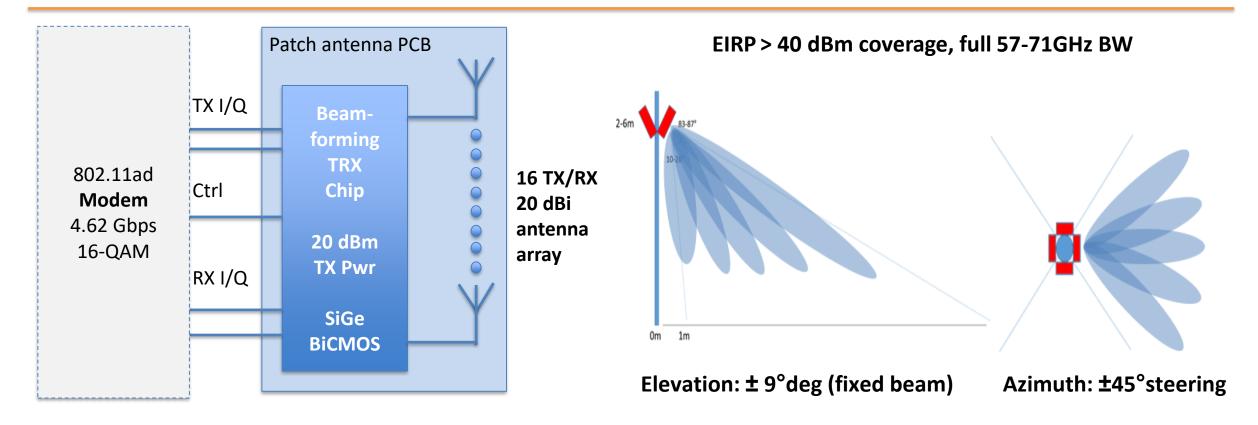


Outline

• Introduction of Sivers IMA AB

- Application of the 802.11ad standard for fixed-wireless access and backhaul
 - Key performance parameters and design challenges
- Overview of the Keysight tools used in the design flow
 - SystemVue, GoldenGate, and VTBs
- Chip design and simulation
 - Architecture and key circuit blocks, beamformer, LNA, PA and VCO
 - Modulated signals and EVM performance on transistor level, early feedback to system simulation
- Measurements and comparison to simulations
 - Focus on modulated signals and EVM performance
 - Link between simulations and measurements
- Conclusion and comparison to state-of-the-art

FWA and Backhaul with 60-GHz 802.11ad (WiGig)

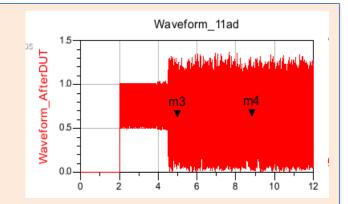


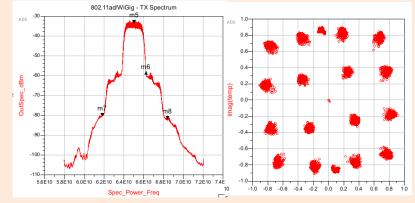
Self-organizing mesh networks for 60GHz carrier-grade access points with Gbit speed up to 500m distance based on 802.11ad.

Key performance parameters!

- New FCC/ETSI rules drive new radio spec
 - 40 dBm EIRP allowed with a low-gain (typ. 20 dBi) antenna, requires
 20 dBm TX power
 - Frequency range 57-71 GHz
 (previously 57-66 GHz), two extra channels
- Half-channel 64/128/256 QAM modulation for dense networks
 - Phase noise, < 100 dBc@1MHz</p>

Our 802.11ad Solution for Infrastructure Equipment




- Challenging system design, baseband 0-1 GHz, severe timing requirements
- Rapid (<35 ns) steering over 64 beams
- Competitive market, demand for first-time right designs

Design Challenges (i)

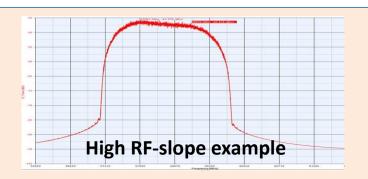
Maximizing output power with acceptable EVM and DC power

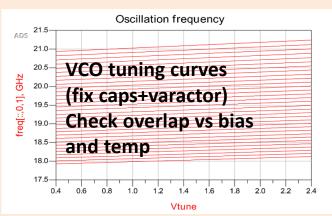
- Modulations in 802.11ad are quite robust, operation close to P1dB possible
- OIP3 not useful when operating close to close compression!
- Predicting output power using 802.11ad waveform in envelope simulation
- Goal: Maximize output power with TX EVM < -21 dB (802.11ad spec)
 - On transistor level in Cadence, check PA load and bias
 - EVM partitioning (PA, VCO...) in system simulator
- Get constellation diagrams early in circuit design, great for intuitive understanding
 - AM-PM and unsymmetries

Design Challenges(ii)

Channel width 2 GHz, 57-71 GHz freq. range

- Frequency response not flat in either RF or analog BB
- Need to model EVM degradation and spectrum in system simulator

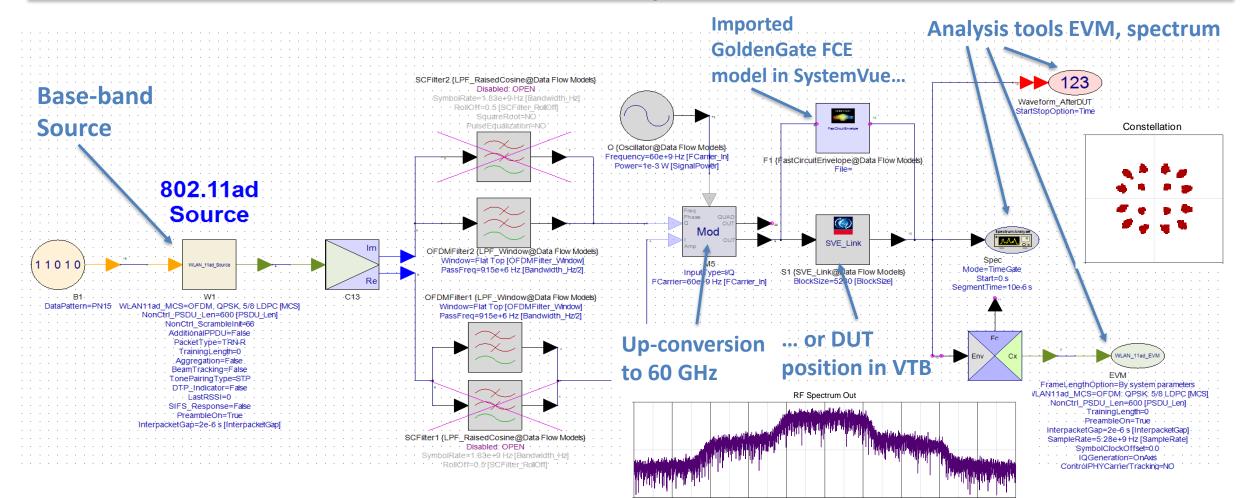

Phase noise


SIVERS

- High phase-noise requirements, and a large band
 - Two VCO cores and varactor/fix cap topology
 - Large simulation matrix requires fast simulator

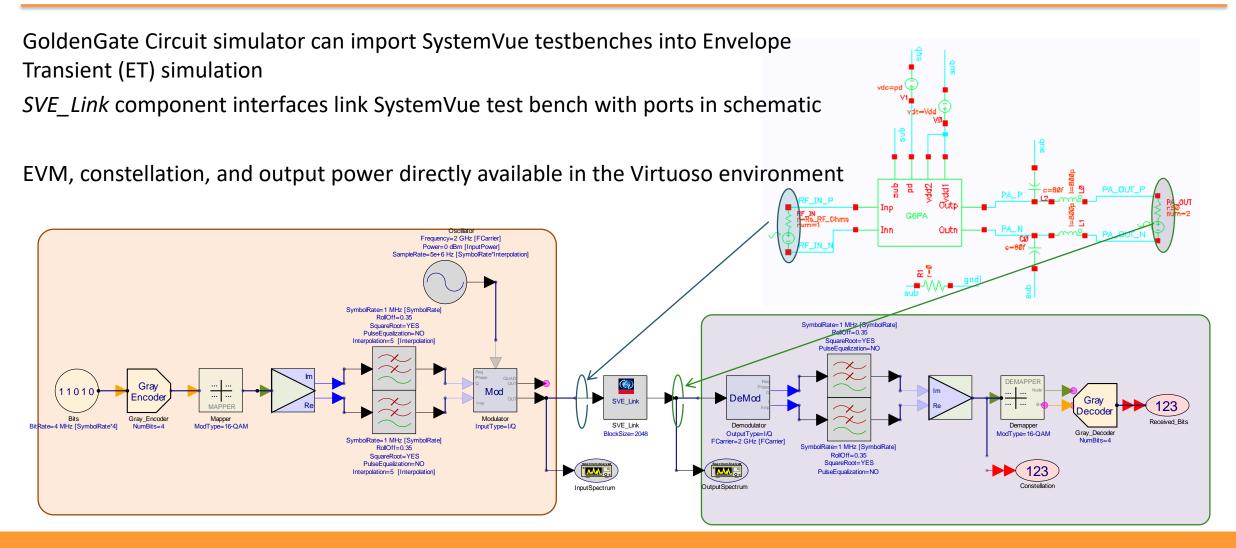
High circuit complexity, 16 TX/RX paths and on-chip frequency generation

HB simulator speed and ability to handle large designs



Outline

- Introduction of Sivers IMA AB
- Application of the 802.11ad standard for fixed-wireless access and backhaul
 - Key performance parameters and design challenges
- Overview of the Keysight tools used in the design flow
 - SystemVue, GoldenGate, and VTBs
- Chip design and simulation
 - Architecture and key circuit blocks, beamformer, LNA, PA and VCO
 - Modulated signals and EVM performance on transistor level, early feedback to system simulation
- Measurements and comparison to simulations
 - Focus on modulated signals and EVM performance
 - Link between simulations and measurements
- Conclusion and comparison to state-of-the-art


An 802.11ad Testbench for SystemVue and GoldenGate

Erik Öjefors

Virtual Test Bench - Using VTBs in Cadence Virtuoso

SIVERSIMA

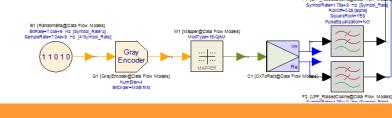
Erik Öjefors


VTB Setup in Cadence Schematic and ADE/Explorer

These bursts for VIB Surves (fugetise Voltage Surves) Have Derride Surves +Pesitive Nois Have Derride Surves +Pesitive Nois Mase Derride Surves +Pesitive Nois Answe Frets - VIB Surves (Calleted signals - Voltage probes) Have Derride Surves +Pesitive Nois Have Derride Surves +Pesitive Nois Provesters Derrection Provesters 0 Strik - VIB Surves (Calleted signals - Voltage probes) Have Derride Surves +Perseters Provesters Derrection Provesters 0 Signal Paret 0 Carright Fract 0 Lonignoffrat 0 Carright Signal Surves Need Kern Set Menakt Carright Signal Surves 0 Carright Signal Surves	Analyses Type En 1 ET 2 SSNA 3 CR 4 DC	able Arguments		 GoldenGate Simulator settings in Analog Environment Choosing Envelope simulation Variables that can changed in the SystemVue Defining in/out ports in schematic window
Perseters connection Perseters ton Perseters connection Perseters to Perseters connection Perseters ton Perseters connection Perseters ton Dorts connection Perseters ton Perseters connection Perseters ton Perseters connection Perseters to Connection (rad) O connection (rad	Name Override So Source V /PORTO Output Ports - VIB S	urce *Positive Node *Negative Node *Series Res Select /net034 Gelect /gnd! Select ZL Sinks (Collected signals - Voltage probes)	1.0	
MirrorSignal N0 GainInbalance 0 PhaseIabalance (rad) 0 L_DriginOffset 0 Q_DriginOffset 0 L_DriginOffset 0 Q_DriginOffset 0 L_DriginOffset 0 L_Drigin	Parameters Con FCarrier_In (Hz) FCarrier_Out (Hz)	nection Pan 6000000000 elect Var 60000000000 elect Var	S.t Default	
IU_Rotation (rad) 0 elect Var., Set Default OversampleRatio 3 InterpacketGap (sec) 2e-06	MirrorSignal GainImbalance PhaseImbalance (rad) I_OriginOffset	NO O O elect Var., O elect Var., O elect Var.,	Set Default Set Default Set Default Set Default	RF_IN SI-RS_RF_Ohms G6PA
MCS SC. P1/2-QAM16, 3/4 LDPC Set Default PSDU_Len 2000 Set Default TimeStop (sec) Be-06 elect. Var., Set Default	OversampleRatio InterpacketGap (sec) MCS PSDU_Len	0 elect Var.) 3 2e-06 elect Var.) SC, P1/2-QRM16, 3/4 LDPC •	Set Default Set Default Set Default Set Default Set Default	

Outline

- Introduction of Sivers IMA AB
- Application of the 802.11ad standard for fixed-wireless access and backhaul
 - Key performance parameters and design challenges
- Overview of the Keysight tools used in the design flow
 - SystemVue, GoldenGate, VTBs, ADS Momentum for custom passives
- Chip design and simulation
 - Architecture and key circuit blocks, beamformer, LNA, PA and VCO
 - Modulated signals and EVM performance on transistor level, early feedback to system simulation
- Measurements and comparison to simulations
 - Focus on modulated signals and EVM performance
 - Link between simulations and measurements
- Conclusion and comparison to state-of-the-art


Chip Evaluation Results

- TX compression and EVM measurements
- RX NF and EVM measuremens
- Synthesizer phase-noise compared to simulations
- Beam-steering results with a PCB patch-array antenna
- Over-the-Air (OTA) full system tests up to 10 Gbit/s

Full TX-RX System Analysis using SystemVue and FCEs

- VCO PN & TX PA QUAD Error After PA After LNA P=9.7 dBm rms EVM -24.3 dB EVM -24.9 dB ator@Data Fig 2 (Oscillator@Data Flow requency=60e9 H Power=10 dBm F6 (FastCircuitEnvelope@Data Fi cillator@Data Fl Frequency=60e9 Hz Power=10 dBm post_LNA {EVM_Env@Data Flow Mod Path 123 123 mplifier@Data Flow LNA utterworth@Data Flow Model loss Gain=11 NA_sink {Sink@Data Flow M NoiseFloure=45 -----2 (Modulator@Data Flow lifer@Data Flow nolifier@Data Flow Model Demodulator@Data Flow dulator@Data Flow Model InputType=I/Q FCarrier=60e9 H InputType=I/Q FCarrier=60e9 H (FastCircultEnvelope@Data Flov OutputType=I/C FCarrier=60e9 F Gain-10 kmnSensitivity=0.3 VolseFigure=10 GCTvpe=TOI AmpSensitivity-Gainimbalance-0.5 (123) sink (Sink@Data Flow Mo out {EVM_Env@Data Flow Models Final EVM -24.3 dB Before PA 1 (LPF RaisedCosine@Data Flow de=1 75e+9 P=0.3 dBm rms EVM -33.2 dB
- Total effect of IQ imbalance, PN, PA nonlinearity, LNA NF, Filtering
- EVM degradation can be observed along the signal path

Outline

- Introduction of Sivers IMA AB
- Application of the 802.11ad standard for fixed-wireless access and backhaul
 - Key performance parameters and design challenges
- Overview of the Keysight tools used in the design flow
 - SystemVue, GoldenGate, VTBs, ADS Momentum for custom passives
- Chip design and simulation
 - Architecture and key circuit blocks, beamformer, LNA, PA and VCO
 - Modulated signals and EVM performance on transistor level, early feedback to system simulation
- Measurements and comparison to simulations
 - Focus on modulated signals and EVM performance
 - Link between simulations and measurements
- Conclusion and comparison to state-of-the-art

Beamsteering 60GHz TRX Comparison

Reference	Technology/ Configuration	Oper. freq. [GHz]	Combined Output Power/P1dB [dBm]	Phase noise [dBc@1MHz]	DC power [W]
Emami <i>et al</i> , ISSCC 2011 (Sibeam)	65nm CMOS 32RX+8TX	59.4- 63.72	28 dBm EIRP	-96	0.9-2.2
Boers <i>et al</i> , JSSC 2014 (Broadcom)	40nm CMOS 16RX+16TX	57-66	24 dBm EIRP	-	0.96-1.2
Valdes-Garcia et al, JSSC 2010 (IBM)	130nm SiGe 16 TX (sep. RX)	51-65	21-25.5	-90 to -87	3.8-6.4
This work	130nm SiGe 16RX+16TX	57-71	22 (57-66 GHz) (20 (66-71 GHz) >40 dBm EIRP (20 dBi ant.)	-101	2.6-5
SIVERS		(Erik Öjefors		27

Conclusion

- A 60-GHz 16-ch beam-steering transceiver demonstrated capable of +40dBm EIRP when used with a 20 dBi PCB antenna array
- The frequency range 57-71 GHz covered with wide-band matching and VCO design techniques
- ADS Momentum used for custom inductors/transformers and full sub-circuit passive modelling
- Phase-noise performance of -101 dBc@ 1 MHz supports 256QAM modulation across OTA link
- GoldenGate and Virtual Test Benches (VTBs) used in circuit design on transistor level. Delivers EVM and spectrum estimations with 802.11ad waveforms in the Cadence environment
- Fast Circuit Envelope (FCE) models exported to SystemVue to refine system simulation
- GoldenGate speed and convergence supported top level simulations of full TX/RX path

SIVERS MA