PCI Express 5.0 Full Speed Ahead

Francis Liu / Jacky Yu

2019 OCT

Sr. Program Manager / Keysight Technologies

......

Agenda

- PCI Express 5.0 Motivation to 32 GT/s
- PCIe 5.0 Development Timeline
- PCIe 5.0 Goals
- PCIe 5.0 Electrical Details
- PCIe 5.0 TX Test Tools
- PCIe 4.0 System board Dual Port test & Appendix D
- PCIe 5.0 RX Test Tools

Motivation for PCIe Gen5 at 32 GT/s NRZ

PCIE 5.0 SPEC W/ 32 GT/S BANDWIDTH IDEAL FOR:)

- High-end networking solutions (400 Gb Ethernet and dual 200 Gb/s InfiniBand technologies)
- Accelerator and GPU attachments for high bandwidth applications
- Constricted form factors that cannot increase lane width but need higher bandwidth

Drivers of PCIe 5.0 Performance

- High-end networking
 - 400 Gb Ethernet
 - Dual 200 Gb/s InfiniBand
- Storage networking
 - NVM Express (NVMe)
 - Big Data
- Increased IC I/O speeds
 - Co-Processors (FPGA, GPU)
 - ASIC

Keysigh⁻

- IP
- Artificial intelligence engines

Coherent Bandwidth by Speed

Keysight PCIe Workshop

Industry Drives Higher PCIe Bandwidth Requirements

- PCIe 5.0 = 32 Gb/s
- Required for 400 Gb Ethernet
 - This equates to 50 GB bidirectionally
 - 16 lanes gives up to 64 GB/s
 - Total full duplex BW = 128 GB/s
- CEM connector for PCIe 5 is planned to be backward compatible with earlier PCIe technologies.
- Tentative schedule for spec release in 2019

	Raw Bit Rate/Lane	Link BW	BW/Lane	Total x16 Bi- Directional Bandwidth
PCIe 1.x	2.5 GT/s	2 Gb/s	250 MB/s	8 GB/s
PCIe 2.x	5.0 GT/s	4 Gb/s	500 MB/s	16 GB/s
PCIe 3.x	8.0 GT/s	8 Gb/s	~1 GB/s	~32 GB/s
PCIe 4.x	16.0 GT/s	16 Gb/s	~2 GB/s	~64 GB/s
PCle 5.x	32.0 GT/s	32 Gb/s	~4 GB/s	~128 GB/s

PCI Express Technology Roadmap

- 6

PCI Express Standards Development

KEYSIGHT TECHNOLOGIES

PCI Express Specifications and Scope

PCI Express" Architecture PCI Express* PCI Express² **Base Specification PHY Test Specification Card Electromechanical** Specification PCI PCI> PCI **Base Specification Phy Test Specification** Card Electromechanical (CEM) Spec Contains all the Defines compliance Applies to Add-In Cards and system knowledge tests of CEM spec in Mother Boards Can directly be detail ٠ Mitigates card manufacturer's applied to Chip need to study the base Test specification Increases reproducibility through PCI-SIG supplied test tools CBB and CLB (compliance base and PCIe 5.0 BASE load board) Currently in review v0.9

Select the specifications that relate to your specific need

8

PCIe 5.0 – Goals

DELIVERING THE FASTEST PCIE SPEED YET

- PCIe 5.0 is backwards compatible with prior generations.
 - Enhanced SMT connector
 - Same pinout
- Signaling is doubled (vGen4) to 32 GT/s
 - Minimal spec changes only ones needed to enable speed bump.
 - EIEOS changed to maintain frequency
 - Data rate bit defined
 - Encoding remains 128/130
 - Loss budget: Goal 35-36 dB
 - Equalization: 8 GT->16 GT-> 32 GT/s
- Scaled flow control & extended tags from PCIe 4.0 sufficient for 32 GT/s.

PCIe Gen5

GOALS

- BER target is 10e-12
- TX Presets P0-P10 to remain the same
- Backward compatibility with previous PCIe Gen1/2/3/4
- Same approach for TX and RX testing used for Gen4
 - Similar method for TX testing via de-embedding of breakout board traces
 - Similar method for calibrating the eye width and eye height as used with PCIe 4.0 (ISI based, fixed RJ)
- Same TX Voltage and Jitter parameters as Gen4

PCI Express 5.0 Channel Topology

RETIMER REQUIRED WHEN LOSS EXCEEDS -36 DB OR >1 CONNECTOR

Longer Channel

°11

- Estimated allowable loss: ~= -36 dB @ 16 GHz
- Root complex pkg loss allowance ~= -9 dB @ 16 GHz
- Add-in Card pkg loss allowance ~= -4 dB @ 16 GHz
- Total AIC loss budget estimate = ~9 dB @ 16 GHz
- PCIe 5.0 CEM Connector loss budget ~= 1.5 dB @ 16 GHz

PCIe 5.0 Reference Clock and PLL Bandwidth Requirements

HIGHER SPEEDS = TIGHTER PHASE JITTER LIMITS

Data Rate	CC Jitter Limit
2.5 GT/s	86 ps (pk-pk)
5 GT/s	3.1p s (RMS)
8 GT/s	1.0 ps (RMS)
16 GT/s	0.5 ps (RMS)
32 GT/s	0.15 ps (RMS)

- PCIe 5.0 specifies a short channel and a 50 ohm termination (100 ohm differential termination) for reference clock phase jitter measurements only.
- Lower PLL bandwidth limit for 8.0 and 16.0 GT/s reduced to 0.5 MHz
 - Revised model CDR at 16GT/s for backward compatibility
 Reduced TX UTJ limit at 8GT/s for backward compatibility

	0.01 dB peaking	2.0 dB peaking	32.0 G1/s CC	CDR	
BW _{PLL} (min) = 0.5 MHz	ω_{n1} = .112 Mrad/s ζ_1 = 14	ω_{n1} = 1.51 Mrad/s ζ_1 = 0.73		4	
BW _{pu} (max) = 1.8	ω_{n1} = .403 Mrad/s	ω _{n1} = 5.42 Mrad/s			
3W _{pu} (max) = 1.8	ω_{n1} = .403 Mrad/s	ω_{n1} = 5.42 Mrad/s			

PCIe 5.0 32GT/s RX Calibration (BASE)

15 MV EYE HEIGHT POST EQ (0.3 UI EYE WIDTH) TARGET

PCIe 5.0 32GT/s RX Calibration (BASE) Example

TARGET TEST CHANNEL BOARD W/ NEW CEM SMT CONNECTOR

Keysight PCIe Workshop

- 14

PCIe 5.0 TX Test Tools

ドロエ

PCIe 5.0 32 GT/s TX Testing

BREAKOUT CHANNEL FOR ASIC REQUIRED

KEYSIGH1 FECHNOLOGIES

Keysight PCIe Workshop

16

÷.

1212

1/5000000

3.91

52.54

20

1875000

10 1.1

TIE RJ (RMS)

EWJ RJ (RMS)

FIZ Jiller (pa)

0.18205

0.12963

0.35843

D9050PCIC New Features

MASTER YOUR BEST DESIGN

- Supports PCIe 5.0 BASE TX testing at 32 GT/s as well as 2.5G, 5G, 8G and 16GT/s (v0.9 BASE)
- Supports PCIe 5.0 reference clock tests (2.5G, 5G, 8G, 16G)
- Will support CEM tests for endpoints and root complexes (2.5G, 5G, 8G, 16G, 32G).
- Integrated De-embedding of break-out channel with optional InfiniiSim
- Automated DUT control using an 81150/60A pulse generator ARB.
- Enhanced switch matrix supporting arbitrary lane mapping
- Minimum oscilloscope BW: 50 GHz

Keysight D9050PCIC PCIe 5 (Gen5) TX Test Application

5.0 BASE SPEC TESTS

₹	PCI-	Expres	s Gen5	Test Applica	tion Nev	/ Devi	:e1					
E	ile <u>V</u> i	ew <u>T</u> o	ols <u>H</u> e	elp								
s	et Up	Selec	t Tests	Configure	Connect	Run	Automate	Results	HTML Report			-
SELECT TESTS	*		PCI Ex 32.0 G 7 Tran 7 Si 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	press Gen 5 T/s Tests smitter (Tx) ignal Quality Unit Interv Full swing Uncorrelate Total uncor Determinis Pseudo pac Data deper Random jit Min swing ommon Mod Tx, DC con Tx, AC corr	Tests Tests al Tx voltage ed total jitt ed determi rrelated PW tic DjDD u ckage loss ndent jitter ter during EIE le Voltage nmon mode te delta of	with n er nistic j ncorre DS for e volta DC cor	o TxEQ itter lated PWJ full swing ge ge nmon mode	e voltage	PCIe 5.0 spec te	BASE		
	(Click	a tesť	s name	to see its d	escription)							^
												V
Μ	lessag	es										•
3	Sumn	naries (click for	r details)					Details			
ES	2019	-01-09	10:06:	00:460 PM (Connected	to Infi	niium	^	Application ini	tialized and re	eady for use.	
S A	2019	-01-09	10:06:	02:142 PM I	Refreshing	HTML	Report	Π				
G	2019	-01-09	10:06:	02:186 PM	HTML Repo	rt Réfi	reshed					
ES	2019	-01-09	10:06:	08:277 PM	Ready			U ▼				

		2		-					
			6	+					
		÷	8 8						
8 E	а. С	÷	8						
0.04112	3		×						
			Ъ						
Test Report Overall Result: PASS									
De	evice Descript	tion							
Data Channel +	ChannelR-1								
Data Channel -	ChannelR-3			-					
Device Name	New Device1								
Tes	st Session De	tails							
Infiniium SW Version	06.30.00701								
Infiniium Model Number	DSAZ634A								
Infiniium Serial Number	Infiniium Serial Number MY57220110								
Application SW Version	0.99.9029.0								
Debug Mode Used	No								
Compliance Limits	PCI-Express G	en5 Test App	ication (official)						
Last Test Date	2019-01-12 22	:03:19 UTC -0	6:00						

Keysight PCIe Workshop

- 18

PCIe 4.0 Dual Port Testing

EXCERPTS FROM PCIE 4.0 TEST SPEC V1.0

Results of the Board Election

PCI

o 2019-2020 PCI-SIG Board of Directors

- Gord Caruk
- Dong Wei
- Greg Casey
- Al Yanes
- Debendra Das Sharma (intel)
- Rick Eads
- Michael Diamond
- Rick Wietfeldt
- Richard Solomon

IBM.

Qualcom

SYNOPSYS'

Silican to Software

KEYSIGHT TECHNOLOGIES

10221

PCI Express Specifications and Scope

SELECT THE SPECIFICATIONS THAT RELATE TO YOUR SPECIFIC NEED

20

PCIe 4.0 Test Spec

PCIE 4.0 OFFICIAL INTEGRATORS LIST NOW OPEN

- PCIe 4.0 Test Spec v1.0 now approved
 - Some typos and minor corrections still linger
- Phy layer integrators list required testing:
 - System Board (16G)
 - TX signal quality (Preset tests, signal quality via dual port method)
 - RX: LinkEQ Response Test.
 - RX Link Equalization test
 - Add-in card (16G)
 - TX Signal quality (Preset tests, signal quality)
 - TX PLL
 - TX Pulse width jitter
 - RX: Initial TX EQ test
 - RX: LinkEQ Response Test.
 - RX Link Equalization test

Keysight PCIe Workshop

PCIE 4.0 CEM Fixture Setup

PHY TX MEASUREMENTS

Add-in Card (end point)

PCIE 4.0 CEM Motherboard Tests

DUAL PORT TESTING IS THE REQUIRED METHOD

System Board (root port)

Appendix D. Alternate Method of System TX Signal Quality Test at 16GT/s

An alternate method of performing 16GT/s System Signal Quality test is provided in this note. The data and 100 MHz reference clock can be captured and post-processed separately. The data will be processed with SigTest using the 16GT/s Add-in Card Signal Quality template file (PCIe_4_16G_CEM.dat). The pass/fail limits for Eye Width at 1E-12 and Eye Height at 1E-12 will remain unchanged for 16 GT/s System Signal Quality Test. The reference clock will be post-processed with a separate clock tool to ensure the Random Jitter is less than or equal to 0.7 ps RMS as defined in the *PCI Express Base Specification*.

The signal quality test described in Section 2.7.5 is the required test method for System Tx Signal Quality testing at 16 GT/s. This alternate method is only to be used when the signal quality test described in Section 2.7.5 fails.

2.7.5 System Board Transmitter Electrical Compliance Test for 16.0 GT/s

1. Connect the Tx lane under test ...

2. Connect the Reference Clock (REF CLK) on the CLB to a high-speed oscilloscope ...

3. ...push the compliance toggle button on the CLB until the correct Tx EQ is selected...

4. Measure transmitted clock and data waveforms simultaneously with a high-speed oscilloscope or equivalent data capture instrument with the maximum bandwidth set to 25GHz

23

PCIE 4.0 CEM Motherboard Tests

WHY HAVE TWO METHODS?

- Dual Port testing was always the POR for PCIe 4.0
- Appendix D was added as a contingency.
 - Initially Sigtest showed issues if max SSC was enabled.
 - New Intel developer resolved the Sigtest SSC issue with a novel approach.
 - All System Boards tested at WS#110 were tested using the dual port approach.
- Dual Port uses both clock and data and represents the AIC view of root port signal quality.
- System board vendors can trade off ref clock jitter for better TX jitter and still be compliant.

24

PCIe 5.0 RX Test Tools

イック

M8040A 64 GBaud High-Performance BERT

Master your next generation PCIe design

- Highly integrated for simplified RX test setup for 400G and PCIe5
- Upgrade paths towards 32 Gbaud PAM4 and 64 Gb/S NRZ
- Most complete solution with test automation
- PCI-SIG gold-suite approved vendor

New: PCI Express Interactive Link Training 8/16/32 GT/s

M8046A-0S1 INTERACTIVE LINK TRAINING FOR PCIE 32G/16G/8G

Default - M80708			Sequence Settings								? _ 5
Application System Clock Ge	erator Analyzer P	atterns N	Locations	M1.DataOut	1						
Setup View 😽 Hadules View 👬	Sequence Editor -×		PHY Protocol	PCIe5	•			Parameters		Darameters	
	<xmt> 😕 🗧</xmt>	E1 6		-				× ▼ × № つ		× ¶× ≞ ⊅	ų.
ifonis Mt DataQuet		-	Replicate	Сору	•			Clieda (H2.Datata	Amplifier	M1.DataOn
			Description				MILOuteOut1 +++	Source	CDR +	Output State	On
k Staining Down	Copy		Link Training Office				PCHS -	Follow SYS CLK	On the	Coupling	AC
Lini_Idie	B45: 1024	86528	Link training PCIE :				Capy • 🖾	Symbol Rate	32.000 GBd	Polarity	Non-Inverted
ared:squeich_cik8	Copy	-	DUT	Add In Card	•			• Equalization	H2.Detain	Amplitude	500 m
24 NB				Common			Add to Card as 12	Equalizer Level	0	Offset	0 m
K Training Us	Cuty Color		Clock Architecture	Common			Common -	- Line Coding	H2.Dutate:	High	250 m
RX_Test_Pattern	B#s: 8080000		Loopback through	L0-Recovery	٠l		10-Recovery -	Coding	NRZ +	LOW	-250 m
tory:PCIExpress5/Test/PCIe5_medified_co	1. 1.7 Copy				-		Recovery Foualit -	Comperator	H2.Datator	CB/2 litter State	
9686600 Bits			Trigger State	Recovery Equali	•			Compare mode	Differential •	Cik/2 Jitter	0.0
			Lane	0 🔺 🔻	7			Threshold	omv 🕂	Deemphasis	MLDateOu
				and first free			Deasserted -	Polarity	Non-Inverted +	a contraction to be	
			Link	0	4		Oypass + 🔄	Input Range	500 mV	PCIe LTSSH Presets	Factory/FullSwin
			Compliance Receiv	Deasserted	÷		P4 + 0	• cox	NO.DODEN	Full Swing	6
							Reserved -	Control	Sequence +	Pre-Cursor	
			Link Equalization	Bypass	•		10 • 0	Transition Density	50 %	Post-Curnor	
			Start Preset	P4	•		10 • 01	Leep Order	2nd •	Output Timing	Mil.DetaOu
							User Defined + 🗔	Loop Bandekith	20.000 MHz	• Unitter	MIIDataOu
serator x		- Analyze	DUT Preset Hint	Reserved	•		P4 - D	Loop Selection	Loop3 +	• III litter	M1.DataOu
us Indicators	The Contemport		DUIT Initial Preset	PO	÷	m		Peaking	18.6	Error Insertion	MLDataOu
ule Channel Bit Rate Data	Output Jitter	55C 9	bor million reset			- Ornali	d Error Ratio	Terrar and the second	inex at a	FILL I HOF INCOMEN	MINDAGION
1 32.000 Gb/s 11braining 2 32.000 Gb/s 1:static 0	8 8	8	DUT Target Preset	PO	•			This is the 2nd order range bandwidth in f_bw = omen the second order loon this	a of the CDR JTF loop a_be / (2 * Pt). For parameter defines the	The full-swing The full-swing value as be and defined in the PCIe L1	ing used by the LT ISSM preset table.
- In the second second			Coloct Start Drocot	User Defined	•	n	THE OWNER OF THE	CDR characteristic by defin	ing a bandwidth value		

PCIe 32G/16G/8G RX Test Setup

SETUP USING M8040A 64G HIGH-PERFORMANCE BERT

New: Interference Source M8054A with Coupler

M8054A interference source module

Emulate level interference for RX stress test

- Designed specifically for M8070A or other dedicated Keysight RX test automation SW
- BW 32 GHz
- 4 ch outputs
- Drives combined Random Interference (RI) and Sinusoidal Interference (SI)
- Common mode and differential mode
- Near-end and far-end channel injection possible by use of couplers
- Specs similar to today's M8196A when used as RI/SI source in M8070A
- Control via M8070A/B

Interference source

M8045A-803 coupler

ISI Channels for High-Speed Receiver Test

M8049A

Preliminary S21 (Sep 2018)

Key features of ISI channel boards

- Emulate channel loss with fine granularity -> 3 separately orderable & cascadable boards
- Lower loss needed for 32 Gbaud signals Applications: PCIe 5, CCIX, IEEE 802.3, OIF-CEI-56G, Fibre Channel, other >20 Gbd applications
- Recommended cables for cascading: M8046A-802 (1 m matched cable pair 2.4 mm)

N5991PxxA

RX TEST AUTOMATION - CALIBRATION

1 Times

126(11)

File Stat	rest Automation Sativare Platform piestors 3.01.	COLUMN FIRMUNE	-
File Stat	test automation Sufficient Paintonin (Introduct 2000) Segmenter Help Total See Annu Help Total See Annu Help Total See Annu Help Total See Annu Help See Annu Help	Proportion Log Life Proportion Log Life Compliance Eye Verification CTLE Consolitance Eye Verification CTLE Consolitance Eye Verification Different CTLE Consolitance Different	Texes 11:00 2.5:00 15:1:07 10:1:07 10 10 10:07 10 10 1
	Al General Calabatan Al General Calabatan Constraint Calabatan Constraint Calabatan Constraint Calabatan Constraint Provide Calabatan C	Constant Real Information Biochardine Biochardine Biocher Statut	10 GHz 27 10 GHz 27 10 orle local was measurement 4 by Pir C VPX_368_ 1 10.008-10 Tuar Abort Sequence Pocease With Next Procedure 0
		Représon	
Severty	Mestage		Dete
P Program P Program P Program P Program D Ma	Instrument Connections Opening office connections to Asympt M04404.24 ED Opening office connections to ID50 Infinuum Genes at Opening office connections to M03007-VS at 152, 1021 M03005 Test Assemblies Software Plefane startup or Strummy media	RT ar TCP-POL BIT IN 2803anteuro20cmat.tmbp0.mSTR TCPAPI: 10:114.8 J405 Invarid: INSTR 10:0 mpilete1	16/11/201 10/11/201 10/11/201 10/11/201 10/11/201 10/11/201 10/11/201
			The second

- Guided and automated stress signal calibration for PCI Express 5.0 32 GT/s^{*})
- "Setup Impairment for Test" function sets the M8040A/M8020A system to user defined impairments. This function supports generator only systems as well as full RX test systems
- TxEQ matrix scan, JTOL test, sensitivity test and RX test
- Contact Keysight representative for latest release timing.

iduct Number PCIe PCIe Station Unknown User 04(10/2018 11:37:18

L0_Cal_32GTps_CompEye

for PCIe 5.0 RootComplex ASIC

SERT System	Keysight N8040A J-852T, H8070A, SH: DE560002						
Generator Channel Channel	M1.DstwDut1						
Offline	False						
Scope Bandwidth	33 GHz						
Number of Averages	21						
Number of Waveform Averages	1024						
Optimize CTLE	True						
Trace Number	1						
Total Channel Logs	-38.695 dB						
Fre-Shoot	3.5 dB						
De-Emphasis	0 dB						
Man Number of Search Steps	7						
Use nominal EN/EW results from Fre Comp Cal	True						
Sinusoidal Jitter Frequency	100 MHz						
Common Hode Interference	0 V						
Random Jitter	500 fe						
Transfer Function File for Package Hodel on Scope	PCIeSRsPackageHodel_RootComplex.tf4						
Scope Connection for Calibration	RealIdge						

26021 [007]	SJ [pe]	Valet (MV)	Eyw Height (w/7)	Eye Width (pel
19.1	6.00	800	14.22	9.61
				12

PCI Express® 5.0 – Keysight Total Solution

32

KEYSIGHT TECHNOLOGIES