

克服物聯網功耗與 生產挑戰

吳世基 大中華地區業務開發經理

sai-kei_ng@keysight.com

IoT終端測試的挑戰

Top challenges for IoT devices

THE CHALLENGES FROM R&D, MANUFACTURING TO DEPLOYMENT

Energy Efficiency

٠

- Maximize battery run time
 - Design trade off:
 - Battery type & capacity
 - Processing power
 - Component size & quality
 - Cost
 - Firmware behaviour

Multi-Technologies & Standards

- Complex testing
- Fast evolving standards
- Device interoperability
- · Inter and intra-device interference
- Wireless coexistence

Interference, Compliance, Regulatory test

Signal and Power Integrity

- Radiated emission
 - Radiated immunity
- Conducted emission
- Conducted immunity
- Spectrum regulatory

- Reflections / crosstalk
- Impedance mismatch
- Excessive losses and noise
- Unwanted transients
- Voltage drops
- Overheating
- Jitter, clock and data error

. 3

Top challenges for IoT devices – the solutions

THE CHALLENGES FROM R&D, MANUFACTURING TO DEPLOYMENT

Multi-Technologies & Standards

Interference, Compliance, Regulatory test

Signal and Power Integrity

新發報: IoT 終端設計和測試方案

KESYSIGHT全方位測試方案,克服各種挑戰

法规和一致性测试 One box for EMI and spectrum Conformance test systems for regulatory pre-compliance tests operator acceptance test 用於生產的OTA 功能測試 X8711A **IoT Device Functional** Test Solution Failproof your IoT device against the rigors of real world 無線共存測試 Ixia **VeriWave** LoRa物理層 測試

X8712A IoT 設備電池續航時間優化方案

せバリサン

關鍵的電池續航時間

	SIGFOX	LoRaWAN	NB-loT	Cat M	EC-GPRS
Release	Now	Now	H2 2016	H2 2016	H2 2016
Link budget	~162dB	~157dB	~164dB	~156dB	~164dB
Battery life	>10 years	>10 years	>10 years	>10 years	>10 years
Spectrum	un & lightly-license bands e.g. 868, 915 MHz	un & lightly-license bands e.g. 169, 433, 470, 868, 915 MHz	GSM & LTE Licensed bands	LTE Licensed bands	GSM Licensed bands
Rates and modulation	Uplink: 100bps BPSK 100Hz BW Downlink: 500bps GFSK 600Hz BW	GFSK, CSS (Chirp Spread Spectrum) ~0.3 to 50kbps 125kHz BW	Up to ~250kbps Uplink π/4-QPSK, rotated π/2 BPSK, 8PSK, opt 16QAM Downlink BSK-16QAM 180kHz BW	1Mbps QPSK, 16 or 64QAM 1.4MHz BW	~10 to ~240kbps GMSK, opt 8PSK, 200kHz BW
Silicon	Multi-vendor	Semtech (2 nd vendor announced)	Multi-vendor	Multi-vendor	TBC
Protocol	SIGFOX	Semtech (2 nd vendor announced)	3GPP Multi-vendor	3GPP Multi-vendor	3GPP Multi-vendor
Certification	SIGFOX	LoRa Alliance	GCF/PTCRB TBC	GCF/PTCRB TBC	GCF/PTCRB TBC

挑戰:

- 1. 如何定義電池的續航時間?
- 2. 什麼東西/情況最耗電? 這種情況的頻次很大嗎?
- 3. 什麼設計改變或可以優化電池的續航時間?

當前電流測試的常用方法

電源, DMM和示波器

DMM

. 8

IoT 電流測試為何難?

- 睡眠/待機模式電流非常低
- 高動態電流切換需要高帶寬
- 功耗分析複雜(事件->功耗)

無線血壓計的電流

可穿戴設備的電流

優化 IoT 終端電池續航時間的新方案

KEYSIGHT X8712A

同步RF事件和功耗水平

- Easily correlate current consumption to critical RF events
- Pinpoint critical events consuming the most current

可深入分析功耗情况

- Calculate RF or DC event's occupancy time and current consumption contribution in percentage to get the estimated battery life in hours according to the measured event
- Statistical current consumption CCDF analysis by user defined time span

數據記錄容易

- Simplify report creation
- Log event occupied time, current consumed and estimated battery life
- Online instrument control or off-line data record for real time comparison and future post analysis

X8712A Battery Life Optimization Solution in Action

X8712A 基於事件的功耗分析系統簡介

DC 功率分析儀

Integrates multiple instrument functions into a single system:

- 1 to 4 advanced power supplies
- Digital voltmeter and ammeter
- Arbitrary waveform generator
- Oscilloscope-like display
- Data Logger

KEYSIGH1

- All functions and measurements are available from the front panel
- Boosts the productivity of the R&D Engineer

電源模塊 2-象限 SMU

12

Voltage Source Current Source Electronic Load

- "Glitch free" sourcing and measurement
- Multiple measurement ranges or seamless auto
- Excellent transient response to pulse sourcing
- Stable with capacitive loads up to 150 µF
- Programmable output resistance simulates battery internal resistance
- Zero burden ammeter
- Auxiliary voltage measurement input for battery rundown test

Measurement

Built-in digitizer of 200,000 samples/second

X8712A Key System Specification – Seamless Measurement

See the complete current waveform you've never seen before – from nA to A –

in one pass and one picture, with effective 28-bit resolution

Key System Specification - Zero Burden Ammeter

Zero-Burden Ammeter (Single reading, Scope or Data log)

- Put SMU module in series with your power source and your DUT
- You source the current while the SMU module measures current flow
- SMU module uses its power output to regulate zero volts across itself while measuring current (in either direction of flow)

14

No simulation: Most realistic way to determine how DUT will work on battery

Key System Specification - Fast Voltage Transient Response Performance

N6781A (high performance Source Measure Unit SMU) providing ~60 mV transient drop N6762A (a general purpose power supply module) providing ~500 mV transient drop

- Mobile digital wireless devices draw current in fast pulses
- Requires a stable voltage with minimum transient voltage drop
- The N678xA SMUs provide about 8X or better performance over GP DC sources
- The same transient response is achieve regardless of seamless ranging operation!

BLE傳感器測試演示

Yellow : DUT Current consumption Green : RF Transmissions between DUT companion device BLUE: LED supply voltage

BLE/WLAN SENSOR TAG EVENT MONITORING

occupied time, current consumption, and more)

Current CCDF

KEYSIGHT TECHNOLOGIES .

測試案例 #1: LoRa 模塊測試

CUSTOMER APPLICATION EXAMPLE

Packet transmission efficiency

Spread Factor	Max Current (mA)	Battery Life (Hr)	COT (%)
7	40.74	30.32	10.97
8	40.74	22.92	17.8
9	39.9	17.25	26.92 _I

The battery life of LoRa module varies depending on the signaling condition it is operating in. We can vary the spreading factor and measure the changes in maximum current and battery life. We can also use this info to help us choose the appropriate battery capacity to meet the battery life specification.

Customer's LoRa Module Current Waveform

NORMAL MODE OPERATION

LoRa Module Current Spike

IRREGULAR CURRENT SPIKE IN SLEEP MODE

測試案例 #2: 智能可穿戴設備

CUSTOMER APPLICATION EXAMPLE

Test Setting:

Ch-1: Battery Simulator, 4V/1A, connects smart watch as the battery.

Ch-2: Voltmeter, CC-Mode/0A, connects to a 2.4GHz antenna placing near the DUT via the X8712A RF Event Detector

Ch-3: Voltmeter, connects to the photoresistor.

Ch-4: Voltmeter, connects to the vibration sensor.

The photoresistor is about 1V in the dark and 1.5 to 2.5V in the light (depending on the brightness level). Note that the vibration sensor requires an additional 3V DC supply. The actual operating of all sensors in the watch is powered by the build-in battery cell.

Other Application #1: Battery Run Down using Zero-Burden Ammeter

- Module uses its power output to regulate zero volts across itself while measuring current (in either direction of flow)
- Single reading, scope, or data log
- N6781A Aux DVM input measures battery voltage
- Gives most realistic assessment of DUT operation with actual battery

2'

Other Application #1: Battery Run-down Test Example

- Battery run-down for a GSM/GPRS handset logged with an N6781A SMU
- Logged min, avg & max volts, amps, & watts
- By placing markers at start & shutdown points:
 - Avg current = 233 mA
 - Avg voltage = 3.82 V
 - Charge = 843 mA h
 - Energy = 3.19 W h
 - Run time = 3 hr 38 min

Other Application #2: DC-DC Converters Measurements

Typical Design Validation Measurements

- Power efficiency vs. load current vs. input voltage
- Transient response
 - Output V & I vs. Input V (line regulation)
 - Output V vs. Output I (load regulation)
 - Start-up and shut-down times (impacts how quickly a circuit can be turned on/off which affects battery life)
 - Output V rise times

Customer Goal: Longer Operational (Battery) Life

Vout rise time

Other Application #2: DC-DC Converters Measurements

Other Application #3: Wireless Charging and Efficiency

Dual-channel power system for wireless charging efficiency test:

- Channel-1 simulate 5V charger
- Channel-2 simulates the battery and calculates charge efficiency in real time

Other Application #4: What is cell characterization?

- Testing to determine:
 - Cell capacity (Ah), internal resistance
 - How capacity varies with age, discharge rate, cell temp
 - Cell voltage vs. SoC (family of curves for different discharge rates, temps)
- Done by one or more charge and discharge cycles.
- Fundamental measurements are current, time, voltage, temperature.
- Classic test done for many years. Many vendors at various performance levels.
- Also known as cell or battery "cycling" or "cyclers"
 - Classic method is CC-CV Charge Rest – CC Discharge.
 - What if this pattern doesn't match the actual application?

Other Application #4: Cell and Battery Characterization Platform

Charge-Discharge-Measurement

- High-accuracy measurement of
 - Cell capacity (Ah) and energy (Wh)
 - Internal resistance
 - Current, voltage, temperature, power
- User-controlled dynamic charge-discharge algorithms
- Individual channelized charge/discharge instrumentation allows for different tests to run on each channel, and easy scaling of number of channels.

MPS

- For low power cells & batteries
- Up to 20V, up to +/ 8A

APS

- For high power cells and batteries
- Up to 160V, up to +/-200A
- Can parallel for higher power

• Cell temperature

Other Power Consumption Test Solutions

KEYSIGHT

X8711A 一種全新的 IoT 終端功能測試方案

為什麼是OTA Signaling信令測試?

SIGNALING VS NON-SIGNALING TEST

特別小的產品,沒有測試接口
不需要特定的晶片控製或驅動
適用於最終的產品應用軟件測 試

Requires

Uses test f

Requires ch Covers a co

Often used

 \star

非信令测试

Non-signaling test, or test mode, is carried out by putting the device-under-test (DUT) into a known state, allowing test equipment to measure predefined transmission patterns.

Signaling test is conducted with test equipment emulating a base station that sends a signal, and the device-under-test (DUT) that will respond to the signal.

Characteristics

rired connection	(•)	Conducts testing over-the-air (OTA)	•
irmware to test in predefined test mode	((i-1))	Uses commercial firmware to test in the DUT's operating mode	
hipset control	Х Х	Do not require DUT control.	2
omprehensive list of test parameters	I	Performs only basic TX/RX tests during final verification tests	•
l in high volume chipsets or modules ring		Often used as end-of-line (EOL) manufacturing test of end devices or pre-test for complex system	30

X8711A IoT Device Functional Test Solution

DESIGN VALIDATION AND MANUFACTURING TEST OF IOT DEVICES

Test Challenges

- IoT devices are becoming smaller and integrated, and no longer has I/O footprint for DUT control.
- Conventional non-signaling test via DUT control using physical I/O is time consuming. The set up process is complicated and requires access to chipset for controlling the DUT.

Keysight Solution

- IoT Device Functional Test solution provides Over-the-Air BLE and WiFi tests.
- The solution is complete with shield-box and TAP based software applications.

Customer Benefits

- Test IoT devices in actual operation mode and in its final form
- Assure the devices meet quality levels and that there is less risk of manufacturing defects or field failures
- Maximize throughput on the manufacturing line and accelerate time to market
- Simplify test development with the TAP measurement suites

Up to 4X reduction in test time

Faster test development – no DUT control required

Simple set up

X8711A IoT Device Functional Test Solution

KEY SPECIFICATIONS

Key Specifications:

Output Power (Rx sensitivity measurements):

BLE Output: -40 to -90 dBm, 0.5dB step; accuracy ±2dB WiFi Output: -33 to -73 dBm, 0.5dB step; accuracy ±2dB

RF Power measurement (Tx power measurements) : Range: 0 to -30 dBm at RFIO port Accuracy: ±2dB

Те	st Parameters	RF Module (BLE/WLAN)	Power Supply (optional)	•
DC •	Test Power On/Off DC Power measurement		√ √	
RF	/Radio Test			
•	Radio Format	BLE 4.2, WLAN 802.11b/g/n (BT5.0 & Zigbee upgrade option)		* <
•	Tx RF Power	\checkmark		2
•	Rx PER Test	\checkmark		•
•	Rx Sensitivity Test	\checkmark		2

BLE 4.2 System Software

SAMPLE SCREENSHOT

X8711A Case Study

HEARING AID BLE SIGNALING TEST

Medical device company

A leading hearing aid product company who is currently making MFI hearing aids in Singapore with BLE integrated.

Current way / issues

- Existing BLE solution is too expensive for manufacturing
- Need cost-down options as production volume increases

New Way (X8711A beta)

- Cost-effective and cover all essential tests to verify product quality
- Reduces test time (a few minutes to < 35s)

<u>Results</u>

- Reduce test time by >50%
 Reduce manufacturing test cost
 by >20%
- Enable manufacturing test
 software standardization with
 Keysight TAP platform

"Amazing! This solution is going to streamline my manufacturing process significantly" VOC

Download case study flyer in Chinese

X8711A Case Study

AC CONTROLLER BLE SIGNALING TEST

Air conditioning system provider

This company is a leading air conditioning (AC) system provider. Their current products have already supported NFC. They are developing next generation AC controller with BLE to improve usability and maintenance operations.

<u>Current way / issues</u> Requires hardwire connection

Complex and expensive

<u>New Way (X8711A)</u> No physical connection, enable OTA testing

 Cost-effective and cover all essential tests they need

<u>Results</u>

- Significant time saving in product design and verification tests
- Another group is evaluating the
 WLAN version of this solution
- Their subsidiaries in US and China are evaluating this solution

"I like the contactless test setup and the small form factor of the modular solution" - VOC

Download case study flyer in Chinese

X8711A Multi-Up Configuration [Custom solution]

FOR HIGH VOLUME MANUFACTURING

It could be any NxN configuration depending on customer's needs

X8711A new accessory – X8752A near field coupler

OTA MEASUREMENT FOR BIG APPLIANCES

This Solution enables OTA TX/RX measurements on finished products (big appliances) in noisy environment without the need of large anechoic chamber

Wireless module inside the AC (DUT)

X8752A - Return Loss and Coupling (Insertion) Loss

- External dimensions 50mm*50mm*26mm
- Including flange 80mm*50mm*26mm

- Coupling (Insertion) loss is measured with 2 complete antennas face to face
- Equates to 2.5cm between patches.

On Axis Gap	0cm	5cm	10cm	20cm	30cm
2.45GHz Loss	9dB	17dB	22dB	29dB	31dB

http://en.tescom.co.kr/exec/file/download.asp?filepath=/file/board&filename=5910D_Data%20sheet_E_v180820.pd

X8751A Shield box

As part of the X8751A RF Shield Enclosure Kit, Keysight will provide:

- One (1) Tescom TC-5910D Shield box comprised of One (1) M591012B I/O module, One (1) TC-93023B Antenna coupler, One (1) F59105A Universal grid fixture.
- One (1) RF cable.
- One (1) SMA jack to N plug adapter.
- One (1) RF terminator N 50 ohm.

Keysight will not conduct any regulatory or safety testing on the X8751A RF Shield Enclosure Kit. If this is required it will be the sole responsibility of CUSTOMERS. Customer is responsible for any additional certification testing and marking such as CE, CSA, NRTL as deemed necessary by Customer. Keysight will not evaluate EMC compliance of the system. The customer is responsible for the EMC compliance upon final system integration & configuration completed at customer assembly site.

Estimated delivery time: 7 weeks

Price: \$6,000

Note that this shield box is not available for sale in Europe due to non-RoHS compliant.

Keysight New IoT Test Solutions

X8711A BLE/WLAN Device Functional Test Solution

40

X8712A Event Based Power Analysis Solution

Back Up

0

.

.

Maximum N6781A Digitizing Rate Performance Summary

	14565 with 66319/21	N6705C with N6781A	14585A with N6705C & N6781A
Scope Capture	 4 kSamples 15.6 µs sample	 512 kSamples (5.12 µs * # of traces)	 1.024 Msamples (5.12µs * # of traces)
	interval Can capture 64 msec	sample interval ¹ Can capture 2.62 sec @	sample interval ¹ Can capture 5.24 sec @
	@ max rate	max rate	max rate
Data Logging	5 msec integration period (200 points/sec) 15.6 µs sample interval Can capture 5 hours @ max rate	 (20.48 μs * # of traces) integration period² (50k / # of traces) points/sec 5.12 μs sample interval Can capture ~45 min @ max rate w/ 512 int. RAM Can capture ~6 hours @ max rate w/ 4G USB RAM 	 (102.4 μs * # of traces) integration period² (10k / # of traces) points/sec 5.12 μs sample interval Writes to PC hard drive. Capture time limited only by available space
CCDF/Histo-	15.6 μs sample interval	Not Available	20.48 µs sample interval
gram Logging	Up to 1K hrs @ any rate		Up to 1K hrs @ any rate

Notes:

- 1. The sample interval time is proportional to number of measurement traces selected. Power traces are calculated so they do not increase sample interval time.
- 2. The integration period is effectively the sample interval for data logging, with the 5.12μ s the underlying
 - rate of sampling that gets averaged into the integration period. Likewise, the integration period is proportional to the number of measurement traces selected excluding power traces which are calculated.

14585A Control and Analysis Software

- Compliments N6705C by enhancing & adding capabilities through a PC graphical user interface:
 - Simultaneously control & display up to 4 N6705Bs / 16 outputs
 - Large PC monitor greatly enhances viewing details
 - Data log direct to PC hard drive, limited only be available space
 - Doubles scope mode memory space (1.024 Meg vs. 512 K)
 - Enables battery drain analysis testing (battery run-down, statistics)
 - Adds statistics capabilities (histogram & CCDF) with direct logging for N6781A BDA SMU module only and data logging conversion for others
 - Adds more ARB waveform generation capabilities; new preconfigured waveforms, formula-based generation, record and playback
 - Formula-based traces available enable re-scaling and unit conversion
 - Works with new and existing 22 modules; useful for a lot more than just Battery Drain Analysis
- Some limiting considerations
 - External app; limits data-logging maximum speed (10 Ksps vs. 50 Ksps for the N6705C mainframe directly)

Keysight IoT Battery Drain Test Solutions

For more info, refer to AN: Battery drain analysis for low power IoT devices: <u>http://literature.cdn.keysight.com/litweb/pdf/5992-1765EN.pdf</u>

	34470 DMM	N2820A scope probe	N6705C + N6781A	B2900 SMU	CX3300 DCWA
Display size	4.3"	Scope dependent	5.9"	4.3"	14.1"
BW, sample rate	17 kHz, 50 kSA/s	500 kHz, 5 Gsa/s	29 kHz, 200 kSa/s	10 kHz, 100 kSa/s	140 MHz, 1 GSa/s
Meas. Res	14 bits	14 bits	18/ 28 bits	20 bits	14 bits
Min measurable static current	10 pA	500 nA	800 nA	1 pA	150 pA
Min measurable dynamic current	10 nA	500 nA	1.4 uA	10 fA	150 pA
Max meas current	10 A	5 A	3 A	3 A	10 A
Min/Max source current	None	None	3 A	3 A	None
Burden voltage	27 mV	1 mV	0 mV	0 mV	4 mV
Price	+	++	++	++	++++
Typical use	R&D / Mfg	R&D	R&D / Mfg	R&D	R&D

Example Application: Design Validation of PC Motherboard (continued)

•Solution: N6705A output sequencing was used to precisely time the individual power inputs to the board isolating the problem and helping to define the PC power supply turn-on sequence requirements

Output sequencing setup

- Output 3: 12V comes on first (0ms delay)
- Output 2: 5V follows 1ms later
- Output 1: 3.3V turns on 19ms later at 20ms
- Experiment with settings to isolate problem

Scope view

- Shows turn-on sequence
- 12V & 5V must always be > 3.3V

Capacity vs. Discharge Rate Characteristics Prismatic Lithium Ion Cell Example

Cell Parameters:

- Capacity rating: 1,000 mAh
 - 0.2C (200mA), 4.2V float to 0.02C (2%) CCCV charge
 - 0.2C (200 mA) discharge
 - 3V cutoff voltage (2.75V also often specified)
 - 20 °C ambient
 - ~99% of capacity for 0.5C
 - ~95% of capacity for 1C
 - ~62% of capacity for 2C
 - Energy rating: 3.7 Wh:
 3.7 V rating for 0.2C discharge

1,000 mAh Lilon cell capacity vs. C rate loading

