5G Over-the-Air Test Implications and Solutions

Philip Chang

2019.10.02

Sr. Project Manager/ Keysight Technologies

1.02410

Let's Build a Device Together

COMPASS FOR THE UNKNOWN

1-9.30221

5G OTA – What Changed

Device Development Work Flow

TEST AND MEASUREMENT PERSPECTIVE

How Good is my Antenna?

Antenna performance OTA tests

Over-the-air

• KPI: Antenna Gain, Correlation

Do I have a working device?

- Functional Verification
- KPI: Throughput, Battery Drain

Is my RF working?

- RF Verification and Test
- KPI: Output power,

Spurious emission, EVM

Is my chipset working?

- Chipset verification
- KPI: Signaling, Throughput

Device Development Work Flow

TEST AND MEASUREMENT PERSPECTIVE

How good is my device? Device Performance • KPI: SISO and MIMO Throughput

Over-the-air

0 0 0 0

5G NR – A New Perspective for Test

FR1 (Sub-6 GHz)

(EYSIGH)

Connector less test for

- Protocol Functionality testing
- Signaling, Full stack, Data throughput testing
- **RF** parameters
- Antenna
- **Full Device testing**

The scope and nature of test has

changed

FR2 (mmWave)

28 GHz **39 GHz**

5G mmW Means

[-R.502271

KEEP CALM

BECAUSE

WE ARE GOING OVER THE AIR

WHETHER WE LIKE IT OR NOT!

/-0.50221

What is OTA?

Let's Build a Device Together

COMPASS FOR THE UNKNOWN

10

What is "Over-the-Air"?

LEAVING THE SAFETY OF A TRANSMISSION LINE

KEYSIGHT TECHNOLOGIES

×11

What is "Over-the-Air"?

LEAVING THE SAFETY OF A TRANSMISSION LINE

PRIMARY COMPONENTS OF A OTA SYSTEM

KEY CONCEPT: QUIET ZONE VS. TEST ZONE

Quiet Zone

- Function of chamber design, where RF
 Propagation is predictable and well behaved
- Applicable when test accuracy is dependent on path loss and phase characteristics
- Critical for RF Parametric measurements

Test Zone

- Applied when OTA test is a functional KPI or protocol test (cable replacement type)
- There are alternate algorithms available to compensate for any induced variation OR the test thresholds are set so that the MUs are built into the tests

KEY CONCEPT: RANGE LENGTH

Range Length = What should be the distance between the probe and DUT

KEY CONCEPT: DEVICE SIZE "D"

What is D?

- D can be small as the radiating element or as large as the entire device
- In handsets, must include coupling to other radiating elements
- 3GPP has defined 3 device categories
- 3GPP has mandated that the location of the antennas are not known (black box testing)
- In short D can be very large potentially 15 – 30 cms

TR 38.810 Table 5.3-1: DUT Categories

DUT category	Description	
Category 1	Maximum one antenna panel with D \leq 5 cm illuminated by test signal at any one time	
Category 2	More than one antenna panel D \leq 5 cm without phase coherency between panels illuminated at any one time	
Category 3	Any phase coherent antenna panel of any size (e.g. sparse array)	

16

KEY CONCEPT: REACTIVE NF, NF, AND FF

- Reactive Near-Field:
 - Non-propagating, evanescent fields predominate.
 - Not typically used for measurement
- Radiated Near-Field
 - Radiated fields predominate
 - But angular distribution is evolving
 - Radial field components exist
- Radiated Far-Field
 - Angular field distribution stops evolving
 - Receiving antenna sees plane-waves
 - Only transverse fields
 - Obvious location for measurement

What Does All This Mean?

VERY LARGE CHAMBERS, WEAK SIGNALS

D(mm)		28 GHz	39 GHz		
	50	0.47	0.65		
	a.84113 - 100	1.87	2.60		
	150	4.20	5.85		
	200	7.47	10.40		
	300	16.80	23.40	<i>.</i>	
Far-field distance at					
different frequencies (in m)					
Path loss: -53 dB to -72 dB					

18

KEYSIGHT TECHNOLOGIES

19

Alternate Approach: Indirect Far-Field

COMPACT ANTENNA TEST RANGE (CATR)

Contrast: DFF vs IFF

Direct Far-Field

Devices normally operate in far-field

Indirect Far-Field

- Allows testing of larger mmWave devices with more compact footprint
- Broadest applicability to 3GPP DUT categories
- Supports testing w/o antenna position declaration 21

Example: Indirect Far Field OTA for UE Test

BASED ON CATR / IFF

- The IFF test method based on compact antenna test range (CATR) uses a parabolic reflector to collimate the signals transmitted by the probe antenna.
- Creates a far-field test environment in a much shorter distance and with less path loss than the DFF method.
- Verizon over-the-air (OTA) testing solution using Compact Antenna Test Range Chamber (CATR)

https://www.youtube.com/watch?v=IJOVIHHB9bw

/-1.502271

Beyond OTA to Solutions

Let's Build a Device Together

COMPASS FOR THE UNKNOWN

5G Device End-To-End Solutions ACCELERATING INNOVATION FOR NEW 5G DEVICES 5G Device 5G MFG **5G Interactive** Acceptance **Solutions R&D Solutions Solutions Protocol** RF **Functional RF/RRM** Carrier **Protocol** Manufacturing Conformance Conformance Acceptance R&D **Automation KPI** ((**e**)) İ W KEYSIGHT **Channel Emulator** mmWave OTA Solutions Non-Signaling Test Set Network Emulator

Scale From Benchtop R&D to Full Rack Acceptance Test

END-TO-END TEST COVERAGE

Device Development Work Flow

TEST AND MEASUREMENT PERSPECTIVE

(Cable Replacement/Direct Far-Field) Chambers

EYSIGH⁻

Keysight CATR Family (Indirect Far-Field) Chambers **OTA** Test Keysight RACK Family

How good is my antenna?

- Antenna performance
- KPI: Antenna Gain,
 - Correlation

Do I have a working device?

- Functional Verification
- KPI: Throughput, Battery Drain

Is my RF working?

- RF Verification and Test
- KPI: Output power, Spurious emission, EVM

Is my chipset working?

- Chipset verification
- KPI: Signaling, Throughput

Industry's Most Complete mmWave OTA Portfolio

VALIDATE MMWAVE 5G DEVICES ACROSS WORKFLOW

RF/Antenna/RCT

- KENSGAR
- Indirect far field
- Module to full device testing
- 30 cm device size

- Direct far field
 Module to full device testing
- Light weight and bench top

Mobility and Performance

3D MPAC

- Direct far field
- Module to full device testing
- Supports fading models with Channel Emulator 28

gNB Over-the-Air (OTA) Portfolio

RF/Antenna

CATR

TX Tests

- Output power
- Output power dynamics
- Frequency error
- EVM
- Occupied BW
- ACLR

RX Tests

- Reference sensitivity
- Dynamic Range
- In Band Selectivity & Blocking
- Receiver IM

Protocol/Functionality Performance/ IOT

gNB MPAC

Functional and Performance Testing With Bi-Directional Fading

- Protocol Functionality testing
- Integration and Verification of baseband
- functionality (CA, Massive MIMO, beam forming)
- NV-IOT functionality
- HETNET functionality
- gNB performance testing

Manufacturing

Compact MPAC

Ultra-Compact Near Field

R&D and Early Manufacturing Volume Manufacturing

- Near field Beam Pattern measurement
- Near field TX Beam parameteric measurement
- Near field Beam RX EIS measurement
- Near field TX Array Calibration
- Near field RX Array Calibration
- OTA RF Parametric Measurements
- Fast measurements for Pass/Fail of DUT

Summary and Conclusions

Let's Build a Device Together

COMPASS FOR THE UNKNOWN

Workflow

- 4 stages of test: Chipset, RF, Antenna and Functional test.
- Conducted for FR1
- OTA in FR2 due to lack of connectors

Basics

- How a chamber enables OTA
- Larger device sizes and smaller wavelengths lead to bigger chambers
- Alterative is to create far-field indirectly using physics - CATR

- Device development and device acceptance
- One size fits all approach will not work

Solutions

Salle

EXIT

- Keysight's workflow based
- solutions pair right OTA
- enviroments with right tools

KEYSIGHT TECHNOLOGIES