5G NR and Validation Solutions

Keysight Technologies	2019.10
JianHuaWu	

1.02415

5G Scenarios and Use Cases

BROAD RANGE OF NEW SERVICES AND PARADIGMS

Amazingly Fast Great Service in Crowd		Best Experience Follows You	Ubiquit Comm	ous Things nunicating	Real-time & Reliable Communications			
eMB	B	mMTC			URLLC			
Mobile Bro Acce	adband ss M	Massive achine Communica	ition	Mission-Critical Machine Communication				
	e.soza							
• All data all the	timo	20 hillion (things' connoc	tod	• Illtro high rolighility				

- All data, all the time
- 2 billion people on social media

- 30 billion 'things' connected
- Low cost, low energy

- Ultra-nign reliability
- Ultra-low latency

5G Specifications

ALIGNED WITH IMT VISION

- IMT 2020 are still defining specs
- IMT: International Mobile Telecommunications Initiative (by ITU)

Phase 1 – mid 2018

- Focus on **eMBB** and low latency aspects
- Minimized changes to core architecture (LTE-EPC) – NSA operation initially
- 5G RAT focus on "conventional" frequency channels

Phase 2 – mid 2020

- Focus on mMTC and URLLC
- Novel layers and architecture to allow full 5G potential (vehicular and multicast services)
- "mmWave" 28, 37, 39 GHz channels and unlicensed spectrum

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES - 1

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) \rightarrow Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave
 - Channel bandwidths up to 400 MHz for single component carrier

	SCS	5	10	15	20	25	30	40	50	60	70	80	90	100
μ	(kHz)	MHz	MHz	MHz	MHz	MHz	MHz							
0		25	52	79	106	133	160	216	270					
BW [MHz]	15	4.5	9.4	14.2	19.1	23.9	28.8	38.9	48.6	N/A	N/A	N/A	N/A	N/A
GB [KHz]		242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5					
1		11	24	38	51	65	78	106	133	162	189	217	245	273
BW [MHz]	30	4	8.6	13.7	18.4	23.4	28.1	38.2	47.9	58.3	68	78.1	88.2	98.3
GB [KHz]		505	665	645	805	785	945	905	1045	825	965	925	885	845
2			11	18	24	31	38	51	65	79	93	107	121	135
BW [MHz]	60	N/A	7.9	13	17.3	22.3	27.4	36.7	46.8	56.9	67	77	87.1	97.2
GB [KHz]			1010	990	1330	1310	1290	1610	1570	1530	1490	1450	1410	1370

SCS 50 100 200 400 μ MHz MHz (kHz) MHz MHz 132 2 66 264 60 N/A BW [MHz] 47.5 95 190.1 GB [KHz] 2450 1210 4930 3 32 132 264 66 120 BW [MHz] 380.2 46.1 95 190.1 GB [KHz] 1900 2420 4900 9860

The principle of extending the upper limit of FR1 from 6GHz to 7.125GHz was agreed in RAN #82

Single-Carrier and Multi-Carrier Operation

- Maximum single-CC bandwidth is <u>400 MHz</u>
- Maximum number of CCs is <u>8</u>

Bandwidth Part

CONTIGUOUS PHYSICAL RESOURCE BLOCKS (PRBS)

- An Initial Bandwidth Part is signaled by PBCH
- It contains CORESET (Control Resource Set) and PDSCH
- The bandwidth part may or may not contain (Beamforming) SS/PBCH block
- Reserved resources can be configured within the bandwidth part
- One or multiple bandwidth part configurations for each component carrier can be semistatically signaled to a UE
 - Only one BWP in DL and one in UL is active at a given time
- Other configuration parameters include:
 - <u>Numerology</u>: CP type, subcarrier spacing
 - Frequency location: the offset between BWP and a reference point within cell BW
 - <u>Bandwidth size:</u> in terms of PRBs

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES - 2

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) → Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave
- Channel bandwidths up to 400 MHz for single component carrier
- Scalability required for different use cases/frequency bands
 - **Scalable numerology** sub-frame structure and component carrier bandwidth
 - Introduction of <u>mini-slots</u> for low latency

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES - 2

- Scalability required for different use cases/frequency bands
 - Scalable numerology sub-frame structure and component carrier bandwidth
 - Introduction of mini-slots for low latency

FR1 Operation	μ	Δf = 2 ^μ ·15 kHz	Cyclic Prefix	N _{RB} ^{max, μ}	N ^{subframe, μ} slot	
Initial	0	15 kHz	Normal	275	1	
Access	1	30 kHz	Normal	275	2	- Data
	2	60 kHz	Normal, Extended	275	4	
					2 C	

FR2 Operation

	μ	Δf = 2 ^μ ·15 kHz	Cyclic Prefix	Ν ^{max, μ} RB	N subframe, μ slot
	2	60 kHz	Normal, Extended	275	4
Access	3	120 kHz	Normal	275	8
	4	240 kHz	Normal	138	16
	5	480 kHz	Normal	69	32

Keysight World: 5G NR Standards

Frame Structure

FRAME STRUCTURE & NUMEROLOGY

Slot structure is flexible to provide for better spectrum utilization

- <u>SCS</u>: 15 kHz*2n
- <u>Frame</u>: 10 ms
- Subframe: Reference period of 1 ms
- <u>Slot</u> (slot based scheduling)
 - 14 OFDM symbols, or 12 with extended CP
 - One possible scheduling unit
 - Slot length scales with the subcarrier spacing
- <u>Mini-Slot</u> (non-slot based scheduling)
 - 7, 4 or 2 OFDM symbols, can start immediately

VEN

Minimum scheduling unit

Slot Usage

FDD AND TDD SLOTS, AND A MIX OF

Slot Format Indication (SFI) informs the UE of the current format (56 formats defined)

- Downlink only (Slot Format 0, used in FDD)
- Uplink only (Slot Format 1, Used in FDD)
- Flexible: Downlink and Uplink (static, semi-static (RRC) or dynamically scheduled (DCI))

Kevsight World:

For

56 – 25

mat						Symbo	l numb	ber in a	slot					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
)	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2	F	F	F	F	F	F	F	F	F	F	F	F	F	F
}	D	D	D	D	D	D	D	D	D	D	D	D	D	F
ł	D	D	D	D	D	D	D	D	D	D	D	D	F	F
;	D	D	D	D	D	D	D	D	D	D	D	F	F	F
5	D	D	D	D	D	D	D	D	D	D	F	F	F	F
7	D	D	D	D	D	D	D	D	D	F	F	F	F	F
3	F	F	F	F	F	F	F	F	F	F	F	F	F	U
)	F	F	F	F	F	F	F	F	F	F	F	F	U	U
0	F	U	U	U	U	U	U	U	U	U	U	U	U	U
1	F	F	U	U	U	U	U	U	U	U	U	U	U	U
2	F	F	F	U	U	U	U	U	U	U	U	U	U	U
3	F	F	F	F	U	U	U	U	U	U	U	U	U	U
	· –	· _ ·			- '	'	'	'	'					
				.*			• • •					*		
2	D	F	F	F	F	F	U	D	È	F	F	j F	F	Ιů
3	D	D	F	F	F	F	U	D	D	F	F	F	F	U
1	F	F	F	F	F	F	F	D	D	D	D	D	D	D
5	D	D	F	F	F	U	U	U	D	D	D	D	D	D
254							Rese	erved						
5	UE determines the slot format for the slot based on TDD-UL-DL-ConfigurationCommon, or TDD- UL-DL-ConfigDedicated and, if any, on detected DCI formats													
		1		3.7			0							

Reduced Latency – Comparation with LTE

LTE – Fixed FDD or TDD operation

- Data is transmitted preceded by the grant for the acknowledgement: the entire process is complete within a single time transmission interval (TTI).
- TTI = # of symbols * symbol length

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES - 3

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) → Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave
- Channel bandwidths up to 400 MHz for single component carrier
- Scalability required for different use cases/frequency bands
 - Scalable numerology sub-frame structure and component carrier bandwidth
 - Introduction of mini-slots for low latency
- <u>3D Beamforming antennas MU-MIMO steerable on per UE basis, massive MIMO</u>

Moving to mmWave Change Everything

Question: Is it b

The plan to introduce cellular services in frequency bands >6 GHz is driving an **abrupt and unprecedented change** in how devices and systems have to be designed, operated and tested.

- To overcome these losses and provide a realistic link budget, it is necessary <u>to use high gain antennas</u> comprised of multiple elements at both ends of the link
- High gain antennas create narrow beam width signals
- Radio propagation at mmWave is very different: very sparse and spatially dynamic, unlike rich multipath with Rayleigh fading

The Friis propagation equation predicts losses at mmWave frequencies:

$$P_r = P_t + G_t + G_r + 20\log_{10}\left(\frac{\lambda}{4\pi R}\right)$$

Path Loss ~ f²

Multi-antenna Transmissions

New Radio mmWave Spatial Domain Optimization

MOBILITY AND THE CHALLENGE OF DIRECTIONAL ANTENNAS

MIMO Variants

NO ARBITRARY DECISION - DRIVEN BY PROPERTIES OF CHANNEL

	FR1	FR2		
Deployment Scenario	Macro cells High user mobility	Small cells Low user mobility		
MIMO Order	Up to 8x8	Typically 2x2		
Number of Simultaneous Users	Tens of users Large coverage areaA few users Small coverage area			
Main Benefit	Spatial multiplexing, MU-MIMO	Beamforming for single user		
Channel Rich multipath Characteristics propagation		A few propagation paths		
SpectralHigh due to the spatial multiplexing		Low spectral efficiency (few users, high path loss)		

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES - 4

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) \rightarrow Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave
- Channel bandwidths up to 400 MHz for single component carrier
- Scalability required for different use cases/frequency bands
 - Scalable numerology sub-frame structure and component carrier bandwidth
 - Introduction of mini-slots for low latency
- 3D Beamforming antennas MU-MIMO steerable on per UE basis, massive MIMO
- Layer 3 (OTA) based on 4G but enhanced for control plane efficiency
- Lower layers / 5G NR greatly enhanced for the required data rates, latency, and efficiency

Non-Standalone (NSA) and Standalone (SA) Modes

JUST AN INTRO: MORE DISCUSSED LATER

- LTE coverage
 - Large existing network deployment
 - Wide coverage due to lower frequency range
- 5G network
 - System deployment will take time
 - Range is more restricted in higher frequency bands
- NSA Dual Connectivity (DC) uses both systems for evolution, reliability and geographical coverage
 - Expectation: slow and smooth transition into 5G

OPTION 3: Non-Standalone NR, LTE assisted, EPC connected

OPTION 2: Standalone NR

Multi-RAT Dual Connectivity with LTE Core (EPC)

OPTIONS 3/3A/3X

- Dual Connectivity with EPC: E-UTRA-NR Dual Connectivity (EN-DC)
- Master Node: eNB (LTE)
- Secondary Node: gNB (5G NR)

x2 interface

OPTION 3: Non-Standalone NR, LTE assisted, EPC connected

No load-sharing

OPTION 3A: Non-Standalone NR, LTE assisted, EPC connected

PDCP split

OPTION 3X: Non-Standalone NR, LTE assisted, EPC connected

Multi-RAT Dual Connectivity with 5G Core (5GC)

OPTIONS 7/7A/7X

- Dual Connectivity with NG-RAN: NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC)
- Master Node: ng-eNB (eLTE) eNB evolved (eLTE)
- Secondary Node: gNB (5G NR)

OPTION 7: Non-Standalone NR, LTE assisted, 5GC connected

OPTION 7A: Non-Standalone NR, LTE assisted, 5GC connected

OPTION 7X: Non-Standalone NR, LTE assisted, 5GC connected

Multi-RAT Dual Connectivity with 5G Core

OPTIONS 4/4A

- Dual Connectivity with NG-RAN: NR-E-UTRA Dual Connectivity (NE-DC)
 - Master Node: gNB (5G NR)
 - Secondary Node: ng-eNB (eLTE)

OPTION 4: Non-Standalone eLTE, NR assisted, 5GC connected OPTION 4A: Non-Standalone eLTE, NR assisted, 5GC connected

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) \rightarrow Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave
- Channel bandwidths up to 400 MHz for single component carrier
- Scalability required for different use cases/frequency bands
 - Scalable numerology sub-frame structure and component carrier bandwidth
 - Introduction of mini-slots for low latency
- 3D Beamforming antennas MU-MIMO steerable on per UE basis, massive MIMO
- Layer 3 (OTA) based on 4G but enhanced for control plane efficiency
- Lower layers / 5G NR greatly enhanced for the required data rates, latency, and efficiency

New Features Coming in Rel-16

Coming in 5G NR Rel-16 (Physical Layer)

JUST A SELECTION OF WI AND SI

Work Items (WI)

- NR-U (Unlicensed Spectrum)
- 2-Step RACH
- C-V2X (Vehicle to Vehicle, Infrastructure or Pedestrian) – *Newly Added WI*
- Enhancements for NR URLLC (Ultra Reliable Low Latency Communications) - Newly Added WI
- Study Items (SI)
 - NOMA (Non-Orthogonal Multiple Access)

Rel-16: Unlicensed Spectrum

NR-U (WI): SCENARIOS

- Both FR1 and FR2 are considered
- Additional functionality needed (beyond existing specifications for licensed spectrum) in the following deployment scenarios:

Scenario	Description
А	Carrier aggregation between licensed band NR (PCell) and NR-U (SCell)
В	Dual connectivity between licensed band LTE (PCell) and NR-U (PSCell)
С	Stand-alone NR-U
D	A stand-alone NR cell in unlicensed band and UL in licensed band
E	Dual connectivity between licensed band NR and NR-U

Scenario A Example:

Rel-16: Unlicensed Spectrum

NR-U (WI): PHYSICAL LAYER ASPECTS

- <u>LBT</u> Listen before Talk
 - Mechanism for which an equipment applies CCA before using the channel
- <u>CCA</u> Clear Channel Assessment
 - Evaluation of presence/absence of other signals
- Channel access cannot be done in bandwidths <u>larger than 20 MHz</u> due to regulatory constraints
 - Activate/transmit the whole or part of a BWP(s) depending on the outcome of LBT procedure
- Subcarrier spacing for control and data channels supporting <u>15 kHz, 30 kHz, and 60 kHz</u>
- <u>NR-U Discovery Reference Signal (DRS)</u>
- Possible extension of PRACH, PUCCH and PUSCH format(s) to support NR-U operation

Rel-16: 2-Step RACH

2-STEP RACH (WI): MESSAGES A AND B

- This simplified RACH procedure reduces RACH overhead and access delay/latency
- A new msgA consists of:
 - Preamble
 - Data
- UE sends msgA via an enhanced physical random access channel (PRACH)
 - msgA includes both 4-step RACH procedure <u>msg1 and msg3</u>
- In response to the UE request: network sends msgB using PDCCH and PDSCH
 - Message includes both 4-step RACH procedure <u>msg2 and msg4</u>

msgA (preamble+data):

Rel-16: Non Orthogonal Multiple Access

NOMA (SI):NO NOMA WI FOR REL-16 WILL BE DEFINED

- NOMA is mainly aimed to <u>be used in UL</u>
- Attractive feature for <u>mMTC</u> applications: improves system load <u>capability</u>
- The most significant gain of NOMA over MU-MIMO can be achieved in the following scenarios:
 - Contention-based, grant-free transmission
 - Small data transmission from RRC_INACTIVE state
- Both grant-based and grant-free NOMA to be studied:
 - Grant-based NOMA is supported at least for eMBB scenario
 - Grant-free NOMA is supported at least for mMTC scenario
 - Grant-free NOMA can be considered for eMBB scenario

3GPP C-V2X Standard Evolution from LTE to 5G

C-V2X: Evolution to 5G maintains backward compatibility

KEYSIGHT TECHNOLOGIES

Keysight Confidential

Calendar

Timeline for deployment of C-V2X (V2V/V2I)

New Spectrum Band defined for C-V2X

ACCORDING TO 36.101

V2X Operating Band

E-UTRA Operating	V2X Operating	V2X UE transmit			V2X UE receive			Duplex	Interface
Band	Band	F _{UL low} – F _{UL high}			F _{DL low} – F _{DL high}			Mode	
47	47	5855 MHz		5925 MHz	5855 MHz		5925 MHz	TDD	PC5
3	3	1710 MHz	-	1785 MHz	1805 MHz	-	1880 MHz	FDD	Uu
7	7	2500 MHz	-	2570 MHz	2620 MHz	Ι	2690 MHz	FDD	Uu
8	8	880 MHz	-	915 MHz	925 MHz		960 MHz	FDD	Uu
39	39	1880 MHz	-	1920 MHz	1880 MHz	_	1920 MHz	TDD	Uu
41	41	2496 MHz		2690 MHz	2496 MHz		2690 MHz	TDD	Uu

Inter-band V2X Operating Band

V2X con-current configuration	Operating Band	Interface	Uplink (UL) operating band BS receive UE transmit			Downlinl F-	Duplex Mode		
1010 0 17	3	Uu	1710 MHz	JL IOW • UL	1785 MHz	1805 MHz	DL low DL r	1880 MHz	FDD
V2X_3-47	47	PC5	5855 MHz	_	5925 MHz	5855 MHz		5925 MHz	TDD
	7	Uu Uu	2500 MHz		2570 MHz	2620 MHz	<i>*</i> —	2690 MHz	FDD
VZA_1-41	47	PC5	5855 MHz	—	5925 MHz	5855 MHz		5925 MHz	TDD
	8	Uu	880 MHz	<u></u>	915 MHz	925 MHz		960 MHz	FDD
VZA_0-47	47	PC5	5855 MHz	—	5925 MHz	5855 MHz		5925 MHz	TDD
V2V 20 47	39	Uu	1880 MHz		1920 MHz	1880 MHz		1920 MHz	TDD
VZA_39-47	47	PC5	5855 MHz	—	5925 MHz	5855 MHz		5925 MHz	TDD
V2X_41-47	41	Uu	2496 MHz		2690 MHz	2496 MHz	¥.:	2690 MHz	TDD
	47	PC5	5855 MHz	_	5925 MHz	5855 MHz		5925 MHz	TDD

V2X intra-band MCC operation

V2X MCC Band	V2X operating Band	Interface
V2X_47	47	PC5

Keysight Confidential

31

C-V2X Two Complementary Communication Modes (Direct and Network) and Scenarios (Served or not by the Network)

C-V2X

Keysight Confidential

10/1/2019

32

C-V2X

Two modes of direct communication in PC5: Transmission Mode 3 and 4

Rel-16: Cellular Vehicle to Everything (C-V2X)

V2X (SI→WI): SIDELINK

- The <u>access link</u> (i.e. DL/UL) is used for communication between gNB and UEs
- The <u>sidelink</u> is used for communication between UEs
 - This is the link used for V2X in LTE and NR
- NR V2X will support: <u>unicast</u>, <u>groupcast</u> and <u>broadcast</u>
 - For unicast: HARQ feedback and HARQ combining are supported
 - For groupcast: HARQ feedback and HARQ combining are supported
- NR V2X is expected to work *in licensed & unlicensed bands*
- NR-V2X sidelink should be able to operate:
 - Out of coverage
 - Partial coverage
 - <u>In-coverage</u>

Access Lin

Sidelink

Rel-16: C-V2X

V2X (SI \rightarrow WI): SIDELINK PHYSICAL CHANNELS

- The following channels are at least defined for NR V2X:
 - <u>PSSCH</u>
 - <u>PSCCH</u> (at least carries information necessary to decode PSS¹
 - <u>PSFCH</u> (contains sidelink feedback control information transpo channel (SFCI))
- NR V2X sidelink synchronization includes at least the following:
 - **<u>S-SSB</u>**: NR SSB structure as the starting point
 - Sidelink PSS and SSS (S-PSS and S-SSS)
 - PSBCH

Periodic transmission of S-SSB is supported

- Sidelink SSB should be designed to be distinguishable from NR SSB
 - Different frequency position and different relative time positions

<u>Half-Duplex restriction</u>:

- Once UE is in the transmission mode, it is not able to receive
- This could significantly reduce the packet reception ratio (PRR)

Rel-16: Enhancements for NR URLLC

ENHANCEMENTS FOR NR URLLC (SI \rightarrow WI): JUSTIFICATION

- In Rel-15, the basic support for URLLC was introduced with:
 - TTI structures for low latency
 - Methods for improved reliability
- Rel-15 enabled use case improvements
 - Such as AR/VR (i.e. entertainment industry)
- FR1 and FR2, TDD and FDD are eligible for enhancements to NR URLLC
- The study item in Rel-16 is focusing on the following items:
 - Higher reliability and higher availability
 - Time synchronization
 - Short latency ~ 0.5 to 1 ms

Rel-16: Rel-16: Enhancements for NR URLLC

ENHANCEMENTS FOR NR URLLC $(SI \rightarrow WI)$: NEW USE CASES

Use Case	Reliability	Latency	# of UEs (per cell)	Traffic Model	Description
Transport Industry	99.999%	5 ms	ms 30 Periodic		Remote driving
Power Distribution	99.9999%	5 ms	8	80 bytes	Power distribution Grid fault Outage management
	99.999%	15 ms	8	250 bytes Periodic	Differential protection
Factory automation	99.9999%	2 ms	40	20 bytes Periodic	Motion control
Rel-15 use case (e.g. AR/VR)	99.999%	1 ms	20	256 bytes	AR/VR

5G Standards and Test Requirements

3GPP Organization

Today's Focus

RAN 5G NR Summary Reference Documents

<u>TSG RAN</u> Radio Access Network	Study Items forResultingNew Radio Access TechnologySpecifications		
RAN WG1 Radio Layer 1 spec	TR 38.802 Physical Layer Aspects	TS 38.201 –TS 38.215	
RAN WG2 Radio Layer 2 spec Radio Layer 3 RR spec	TR 38.804 Radio Interface Protocol Aspects	TS 38.300–TS 38.331	
RAN WG3 lub spec, lur spec, lu spec UTRAN O&M requirements	TR 38.801 Radio Access Architecture and Interface	TS 38.401 – TS 38.474	
RAN WG4 Radio Performance Protocol Aspects	TR 38.803 RF and Coexistence aspects	TS 38.101 – TS 38.173 (+38.307)	
RAN WG5 Mobile Terminal Conformance Testing	TR 38.80x	TS 38.508 – TS 38.533	
	Keysight World	- 39	

Overview of 3GPP 5G New Radio Standards

CONFORMANCE TESTS

5G NR Conformance Tests

5G NR RAN Working Grou				
	Study Items for New Radio Access Technology	Specifications		
RAN1 Radio Layer 1	TR 38.802 Physical Layer Aspects	TS 38.201 – TS 38.215		
RAN2 Radio Layer 2 and Radio Laver 3	TR 38.804 Radio Interface Protocol Aspects	TS 38.300 - TS 38.331		
RAN3 Radio Network	TR 38.801 Radio Access Architecture and Interface	TS 38.401 – TS 38.474		
RAN4 Radio Performance and Protocol	TR 38.803 RF and co-existence aspects	TS 38.101 – TS 38.173 (+38.307)		
RAN5 Mobile Terminal Conformance	TR 38.80x	TS 38.508 – TS 38.533		
Tests				

Base Stations	
TS 38.141-1	Part 1: Conducted testing in FR1
TS 38.141-2	Part 2: Radiated testing for specific base station configurations in
	FR1 & FR2
Devices	5G NR UE Radio Transmission & Reception:
TS 38.521-1/2/3/4	1. Range 1 Standalone – FR1 Conducted Tests
	2. Range 2 Standalone – FR2 Radiated Tests
	3. Range 1 & 2 Interworking operation with other ratios (NSA)
	– FR1 Conducted & FR2 Radiated
	4. Performance requirements (SA and NSA)
	– FR1 Conducted & FR2 Radiated
TS 38.523-1/2/3	
	5GS UE Protocol Conformance
	1. Protocol
	2. Applicability of protocol test cases
	3. Protocol test suites
TS 38.533	
	5G NR Radio Resource Management (RRM) (SA and NSA)
	- FR1 Conducted & FR2 Radiated
	Other UE Conformance docs: TS 38.508-1/2, TS 38.509, TS 38.522

Device Conformance and Operator Acceptance Tests

Process to Ensure 5G UE Conformance

- Standards bodies, certification bodies, test equipment vendors and 5G NR device makers together ensure conformance to 5G specifications
- GCF and PTCRB certification organizations are ready to validate 5G conformance test cases and to start with the certification of the 5G devices

Keysight World

Carrier Acceptance Tests

- Defined by operators
- Validated by operators

Typical steps for devices

UE Conformance Tests Summary – 1 of 2

RADIO TRANSMISSION AND RECEPTION

FECHNOLOGIE

FR1 Conducted Tests FR2 Radiated Test

Transmitter Characteristics	Receiver Characteristics	Interworking Operation	Performance
• Transmitter Power (UE Max Output Power, Power Reduction, CA, SUL, UL-MIMO)	Reference Sensitivity Level (Intra-band Contiguous, Non-Contiguous, Inter-Band, DC, SUL, UL-MIMO)		
Output Power Dynamics (Min Power, Tx OFF Power, On/OFF Time Mask, Power Control)	Maximum Input level (CA, UL-MIMO, Adjacent Channel Selectivity)	Rx characteristics tests under different carrier	
Signal Quality (Freq Error / EVM / Carrier Leakage_In-Band Emissions_CA_)	Blocking Characteristics (In-Band, Out-of-Band	configuration between 5G NR frequency range 1 and	Still being defined
Spectrum Emissions	Spurious Response	2 and non-standalone	
(Occupied BW / SEM/ ALCR /	Intermodulation Characteristics	(EN-DC)	
Spurious / SUL, UL-MIMO)	 Spurious Emissions 		
Tx Intermodulation (FR1)	Rx Intermodulation (FR1)		
	CURRENT STATUS Marc	h 2019	
 Partial Tx test done single carrier, CA later MOP, EIRP, TRP first completed FR2 test 	 Very little Rx test done, single carrier, CA later No FR2 yet 	 Partial done for NSA opt 3 DC (some CA, but not complete yet) 	1 test case close to 100% completed: 2Rx TDD perform – 2x2 MIMO
Keysight World			

UE Conformance Tests Summary

RRM AND PROTOCOL

TECHNOLOGIES

FR1 Conducted Tests FR2 Radiated Test

Protocol	RRM Test Coverage			
 Protocol Idle Mode Layer 2 Random access procedures, DL data transfers, UL data transfers, transport size, Protocol RRC procedures Mobility management Session management 	 Ensures efficient use of the radio resources in standalone (FR1 & FR2) and non-standalone (E-UTRA & 5G NR interworking) EN-DC option 3 (NR PSCell in FR1) EN-DC option 3 (NR PSCell in FR2) SA option 2 (NR Pcell in FR1) SA option 2 (NR Pcell in FR2) 			
CURRENT STATUS March 2019				
Mostly done SA opt 2 and NSA opt 3	Still Being Defined 2 tests are 100% completed			
	Keysight World			

Considerations for Radiated Tests

Paradigm Shift in Test

RADIATED TEST MOVES TO THE MAINSTREAM

Connected Test Setup: Preferred for nearly all LTE and NR FR1 Tests

mmWave DUTs now all integrated, no probing connectors, harder to test

Radiated tests mandatory for ALL FR2

Instruments

47

Keysight World

Radiated Test Methods for FR2 Conformance

Direct Far Field

Antenna beam pattern characterization
 Beamforming/beamsteering validation
 RF parametric tests (if S/N high enough)

Subject to higher path loss
 Large chambers at mmWave frequencies

Indirect Far Field

- Antenna Beam pattern characterization
 Beamforming/steering validation
- ✓ RF parametric tests
- ✓ Small footprint, lowest path loss

× Rx spatial field generation not defined

Different Chambers for Different Tests

Indirect Far-Field

RF Conformance

Frequency: FR2 24 – 52 GHz (inband), 6 - 110 GHz (out-of-band)

Target Devices: Antennas/ modules, phone, tablets, small gNB Spatial Multiprobe Anechoic Chamber

Direct Far-Field

RRM for Multi-AoA NR-MIMO

Frequency: FR2 24 - 44 GHz

Target Devices: Modules, phones, phablets, mobile test platforms

Direct Far-Field

Protocol Test With Single AoA

Frequency: FR2 24 - 44 GHz

Target Devices: Modules, phones, phablets, mobile test platforms

49

KEYSIGHT TECHNOLOGIES

Keysight World

Summary

1-2.50221

Key Takeaways

UNDERSTANDING THE ROAD AHEAD

- Standards will continue to evolve through Rel-16 and beyond: your test solutions need to be flexible and scalable
- Higher frequencies, wider channel bandwidths, and dual connectivity increase the number of test cases and test complexity
- mmWave and MIMO introduce new OTA test requirements for 5G NR devices and base stations
- New initial access and control procedures will require more testing

- Higher frequencies, wider bandwidths, dual connectivity, increased # test cases, increased test times, and OTA all increase test complexity
- Conformance test methods are not complete many challenges ahead
- Standards continue to evolve. Release-16 is due mid 2020 and early work on Release-17 has begun.

Summary

UNDERSTANDING THE ROAD AHEAD

- Higher frequencies, wider bandwidths, dual connectivity, increased # test cases, increased test times, and OTA all increase test complexity
- Conformance test methods are not complete –many challenges ahead
- Standards continue to evolve. Release-16 is due mid 2020 and early work on Release-17 has begun.

Keysight 5G Solutions for All Parts of the Ecosystem

5G Network Test

Drive Test and Analytics

5G Signaling Validation Test

5G NR Protocol Validation

UE Emulation and Load Test

Radio Signaling Test

Network Simulation and Test

5G NR Conformance Test

Physical Layer Design and Test Solutions

System-Level Simulation

Parametric Signal Test

Component Characterization

Digital Conformance Test

 (\checkmark)

Manufacturing Test Automation

Keysight World