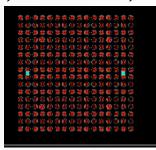
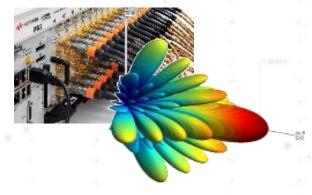
5G Boot Camp

PART TWO:
7 KEY MEASUREMENT CHALLENGES AND CASE STUDIES

Keysight Technologies

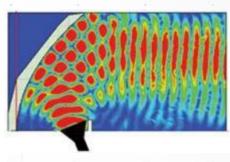

2019 JAN

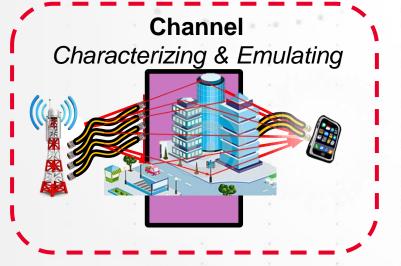
JianHuaWu



7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity

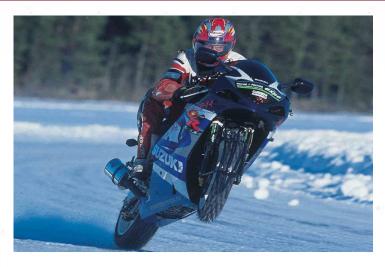




Life Beyond Connectors

Over-the-Air

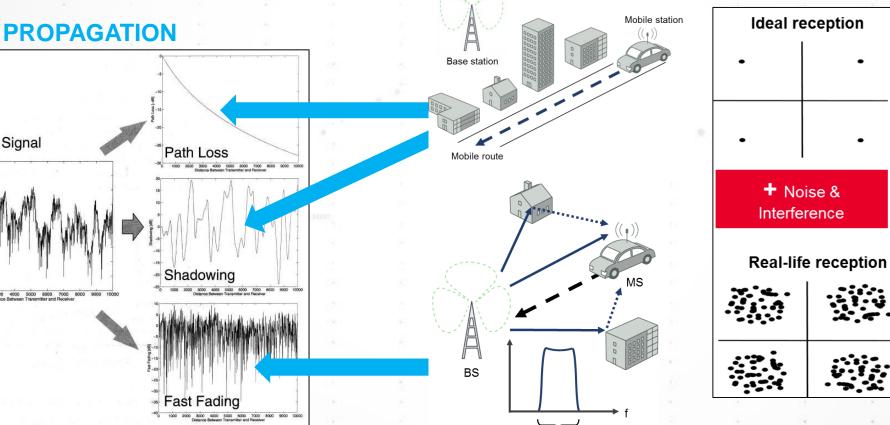
5


7

Suppose you want to design and test a motorbike

UNDERSTANDING THE CHANNEL IS OBVIOUSLY CRITICAL TO SUCCESS

What is the Radio Channel?



Total Signal

Radio Channel = Propagation path between Tranceivers => Antenna beam pattern * Multipath Propagation * Mobility + Interference

Noise

- Thermal Noise
- Broadband noise from PAs

Adjacent cells/Users Modulated waveforms

- Co-channel interference
- Adjacent channel interference

Doppler spread

The evolution of channel models

- 2G <3 GHz, 200 kHz BW
- Non-spatial TDL
- 3G <3 GHz, 5 MHz BW
- Non-spatial TDL
- 4G < 6 GHz, 20 MHz BW
- Non-spatial TDL conducted tests
- SCME CDL MIMO OTA (radiated)
- 3D MIMO (for BS elevation beamforming studies)
- 5G 0.5 100 GHz, >1 GHz BW
- Spatial CDL

Channel models have been developed over many decades based primarily on channel measurements (sounding)

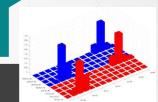
More recently, *Ray Tracing* of modelled environments has become possible

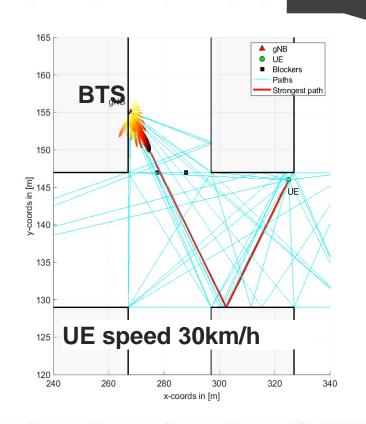
The trend is from non-spatial to spatial models which implies testing has to be done OTA

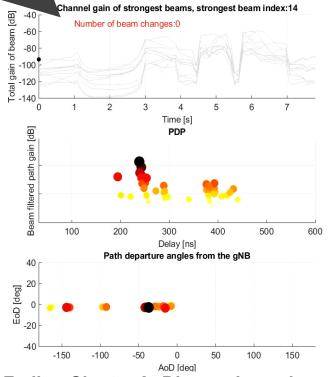
TDL - Tapped delay line (time only)

CDL - Cluster delay line (time and space)

SCME – Spatial channel model extended


5G Challenge: Highly Dynamic Fading Channel in Field – connected state UE mobility

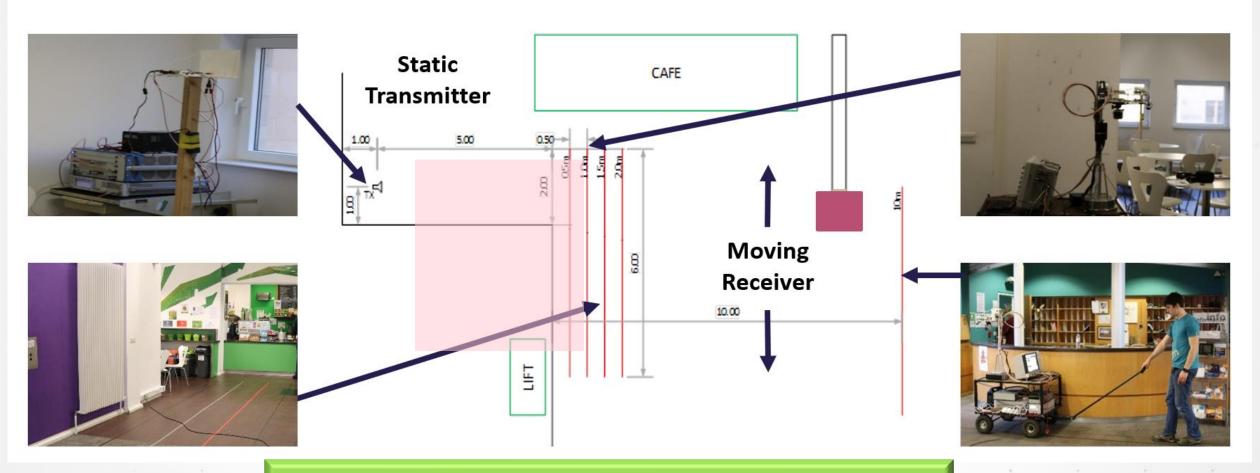

- BTS and UE(s) need to have seamless interoperability on beam refinement and change, and eventually handover to next cell and/or fallback to LTE
- Highly blocking channel conditions high probability on link collapse - how to mitigate?



Where is my next Beam? Fast & reliable beam management needed

Fast fading filtered out on gain curves to have clearer visual

Fading Cluster AoD's are dynamic

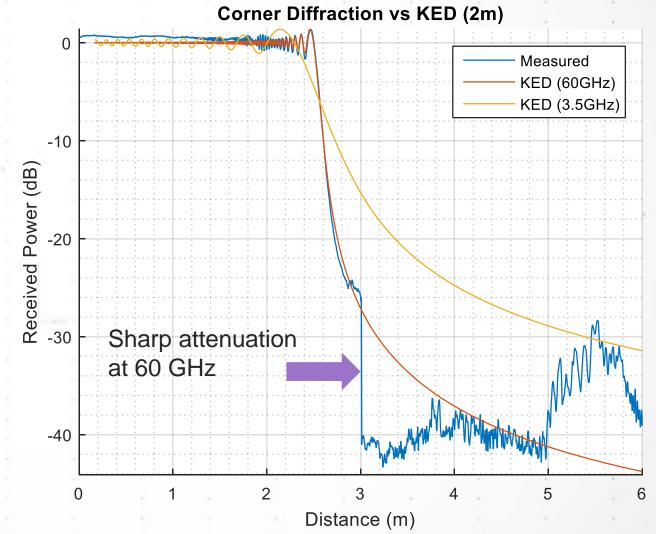


What about the Channel at mmWave?

CORNER DIFFRACTION STUDY

ftp.3gpp.org/tsg_ran/WG1_RL1/TSGR1_84b/Docs/R1-162872.zip

How well do 60 GHz signals bend round corners?


Simulated vs. measured at 3.5 GHz and 60 GHz

CORNER DIFFRACTION STUDY

AT 3.5 GHZ THE SHADOW EFFECT IS MUCH LESS PRONOUNCED

EVEN AT 2M DISTANCE WITH 40CM OF TRAVEL:

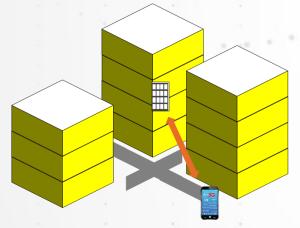
- 60 GHZ IS AT -25 DB
- 3.5 GHZ IS AT -8 DB

3GPP TR 38.901 - Stochastic model overview

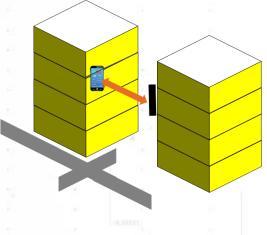
CHANNEL MODEL FOR UP TO 100 GHZ

- Extended from existing sub-6 GHz channel models: 3D MIMO model (3GPP TR 36.873) or IMT-Advanced (ITU-R M.2135).
- Developed for performance evaluations of 5G physical layer techniques
- Designed to cover testing of both Mobile Equipment and Access Network of 3GPP systems
- Supported scenarios are urban microcell street canyon, urban macro cell, indoor office, and rural macro cell
- Key properties of the models
 - Frequency range from 0.5 to 100 GHz
 - Bandwidth is supported up to 10% of the center frequency but no larger than 2 GHz
 - Spatial consistency is supported
 - System-level, Link-level CDL-models and non-spatial TDL-models

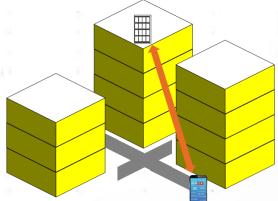
Channel Model and Scenario	Description	LOS	NLOS
3GPP 5G 38.901 UMi CDL-A	[11]	-	1
3GPP 5G 38.901 UMi CDL-B	[11]	-	1
3GPP 5G 38.901 UMi CDL-C	[11]	-	1
3GPP 5G 38.901 UMi CDL-D	[11]	1	
3GPP 5G 38.901 UMi CDL-E	[11]	1	-
3GPP 5G 38.901 UMi 02I	[11]	-	1
3GPP 5G 38.901 UMi 02I CDL-A	[11]	-	1
3GPP 5G 38.901 UMi 02I CDL-B	[11]	-	1
3GPP 5G 38.901 UMi 02I CDL-C	[11]	-	1
3GPP 5G 38.901 UMa	[11]	1	1
3GPP 5G 38.901 UMa CDL-A	[11]		1
3GPP 5G 38.901 UMa CDL-B	III LOS / NLOS	-	1
3GPP 5G 38.901 UMa CDL-C	[11]		1
3GPP 5G 38.901 UMa CDL-D	[11]	1	-
3GPP 5G 38.901 UMa CDL-E	[11]	1	-
3GPP 5G 38.901 UMa 02I	[11]		1
3GPP 5G 38.901 UMa 02I CDL-A	[11]		1
3GPP 5G 38.901 UMa 02I CDL-B	[11]		1
3GPP 5G 38.901 UMa 02I CDL-C	[11]		1
3GPP 5G 38.901 RMa	[11]	1	1
3GPP 5G 38.901 RMa CDL-A	[11]		1
3GPP 5G 38.901 RMa CDL-B	[11]		1
3GPP 5G 38.901 RMa CDL-C	[11]		1
3GPP 5G 38.901 RMa CDL-D	[11]	1	-
3GPP 5G 38.901 RMa CDL-E	[11]	1	-
3GPP 5G 38.901 InO	[11]	1	1
3GPP 5G 38.901 InO CDL-A	[11]		1
3GPP 5G 38.901 InO CDL-B	[11]	-	1
3GPP 5G 38.901 InO CDL-C	[11]		J
3GPP 5G 38.901 InO CDL-D	[11]	1	-
3GPP 5G 38.901 InO CDL-E	[11]	1	

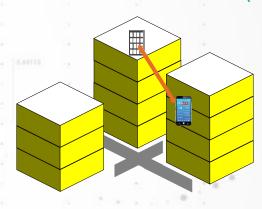


Use cases for Massive MIMO testing


3GPP TR 38.901 CHANNEL MODEL SCENARIOS

Urban Microcell (UMi)


UMi street canyon (O2O)


UMi Outdoor to Indoor (O2I)

UMa street canyon

UMa Outdoor to Indoor (O2I)

Urban Macrocell (UMa)

BSs mounted below rooftops

BSs mounted above rooftops

Channel models for link-level evaluations

CLUSTERED DELAY LINE (CDL) MODELS

- TR 38.901 specifies five different CDL channel profiles;
 - CDL-A, CDL-B and CDL-C are constructed for NLOS
 - CDL-D and CDL-E are constructed for LOS
- The RMS delay spread values of both CDL models are normalized and they can be scaled in delay for a desired RMS delay spread

										Path Lo	oss Mod	del:	3GPP 5G 38.901 UMi	Path Loss Model:	■ 3GPP 5G 38.901		
Table 7.7.1-2. CDL-B												L	Path Loss Exponent:	3GPP 5G 38.901 UMi			
Cluster#	Normalized delay	Power in [dB]	AOD in [°]							Path Lo	oss Exp	onent:		Faill Loss Expollent.	3GPP 5G 38.901 UMi CDL-A		
1	0.0000	0	9.3	-173.		5.8 78.9							_		3GPP 5G 38.901 UMi CDL-B		
2	0.1072	-2.2	9.3	-173.		5.8 78.9	190			Shado	w Fadin	g Model:	3GPP 5G 38.901 UMi	Shadow Fading Model:			
3	0.2155	-4	9.3	-173.		5.8 78.9	+			Onado	wraum	ig iniouei.	_ 3011 30 30:301 3111		3GPP 5G 38.901 UMi CDL-C		
4	0.2095 0.2870	-3.2 -9.8	-34.1 -65.4	125.5	5 11	5.3 63.3	T -1-1-	7744 601	_					std:	3GPP 5G 38.901 UMi CDL-D		
6	0.2986	-9.0	-05.4	15			i abie	7.7.1-4. CDL-	υ.						3GPP 5G 38.901 UMi CDL-E		
7	0.3752	-3.4	-11.4		Cluster#	Cluster PAS	Normalized Delay	Power in [dR]	AOD in [°]	ΔOΔ in [°]	ZOD in [1 704 in [°1			3GPP 5G 38.901 UMi O2I		
8	0.5055	-5.2	-11.4	15		Specular(LOS path)	n Omnanzea Belay	-0.2	0	-180	98.5	81.5					
9	0.3681	-7.6	-67.2	-89	1	Laplacian	0	-13.5	0	-180	98.5	81.5	□		3GPP 5G 38.901 UMi O2I CDL-A		
10	0.3697	-3	52.5	13:	2	Laplacian	0.035	-18.8	89.2	89.2	85.5	86.9	Lar		3GPP 5G 38.901 UMi O2I CDL-B		
11	0.5700	-8.9	-72	-80	3	Laplacian	0.612	-21	89.2	89.2	85.5	86.9			3GPP 5G 38.901 UMi O2I CDL-C		
12	0.5283	-9	74.3	95	1	Laplacian	1.363	-22.8	89.2	89.2	85.5	86.9	On	Non-self-blocking:	1 : :		
13	1.1021	-4.8	-52.2	10:		Laplacian	1.405	-17.9	13	163	97.5	79.4	_ 3		C. P. No. 30 IN JIMB		
14	1.2756 1.5474	-5.7 -7.5	-50.5	-81	6	Laplacian	1.804	-20.1	13	163	97.5	79.4	C 47 5	Number of blockers:			
15 16	1.5474	-7.5 -1.9	61.4 30.6	-94	7	Laplacian	2.596	-21.9	13	163	97.5	79.4	[4] \eqrif		3GPP 5G 38.901 UMa CDL-B	1	
17	2.0169	-7.6	-72.5	-13	0	Laplacian	1.775	-21.9	34.6	-137	98.5	78.2	n/o)	Speed for each blocker (3GPP 5G 38.901 UMa CDL-C		
18	2.8294	-12.2	-90.6	58	0	Laplacian	4.042	-27.8	-64.5	74.5	88.4	73.6	n/s)		Carr ca co.cor cina coz c		
19	3.0219	-9.8	-77.6	-79	10	Laplacian	7.937	-27.8	-04.5	127.7	91.3	78.3	1: 8.33 2: 8.33		3GPP 5G 38.901 UMa CDL-D		
20	3.6187	-11.4	-82.6	65	10	Laplacian	9.424	-23.0	-32.9 52.6	-119.6	103.8	87			3GPP 5G 38.901 UMa CDL-E		
21	4.1067	-14.9	-103.6	52	42							70.6			3GPP 5G 38.901 UMa O2I		
22	4.2790	-9.2	75.6	88	12	Laplacian	9.708 12.525	-30.0 -27.7	-132.1 77.2	-9.1 -83.8	80.3 86.5	70.6			0000 50 00 004 114 001 001		
23	4.7834	-11.3	-77.6	-6(13	Laplacian				-83.8	86.5	12.9					4
Per-Cluster Parameters Per-Cluster Parameters							01 1/	OD := t4D1				ок	Cancel				
	Parameter casp in [°] casp in [°] czsp in [°] Parameter Value 10 22 3 Value			CASD in [°]	CASA in [°]	Czsp in [°]	Czsa in [<u> </u>	(PR in [dB]				Oit	Caricei			
val	ue 10) 22	<u>′</u> ;	3		Value	1 5	1 8	1 3	1 3		11					

Channel Model Selection

MS Speed:

Emulation length:

Channel Model:

Propagation Condition:

Use angle spread scaling

BS1 - MS1

8.330

3GPP 5G 38.901 UMi

Channel Model Selection

MS Speed:

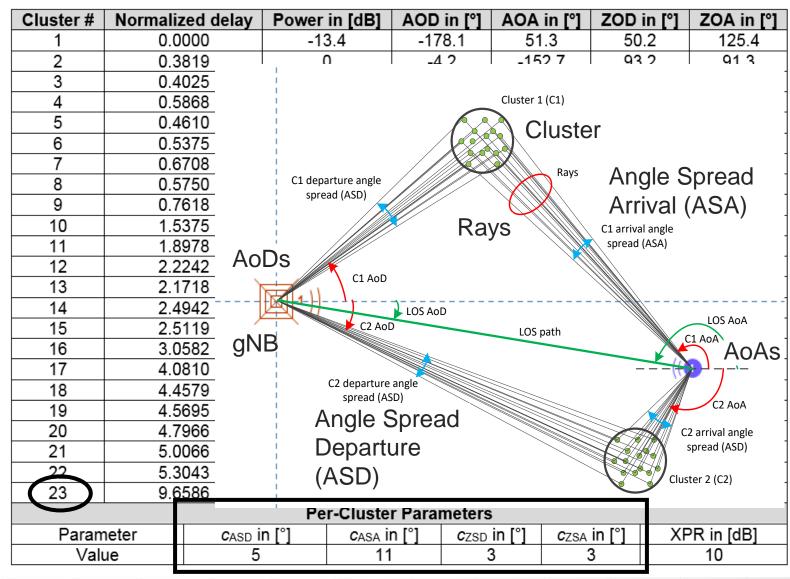
Emulation length:

Channel Model:

Propagation Condition:

Use angle spread scaling

BS1 - MS1

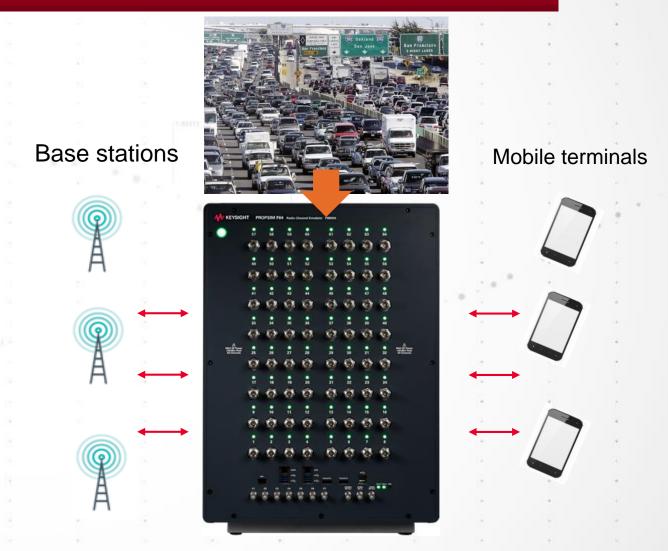

3GPP 5G 38.901 UMi CDL-E

PROPSIM UI

Channel models for FR2: CDL-A

TR 38.901 Table 7.7.1-1. CDL-A

- Example: TR 38.901 CDL-A
- CDL-A is a non line of sight (NLoS) model
- Each CDL comprises 23 clusters
- Each cluster comprises 20 multipath components (rays) around the cluster perimeter
- Each cluster has an AoD and AoA.
 These values are used to create the ray AoAs within a spread (ASA or ASD) defined by C_{ASA} and C_{ASD} in the table.
- Etc Full details is in TR 38.901
- Diagram to the right shows the concept of the CDL models but showing only two clusters.

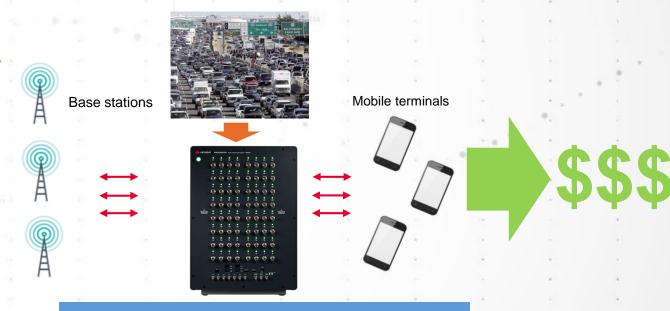


What is Standalone RF Channel Emulation?

ENABLES REAL-WORLD LIKE END-TO-END PERFORMANCE TESTING IN LAB

Real Time Emulation of radio wave propagation and interference to multiple BTS and Mobile simultaneously

- ✓ Attenuation
- √ Shadowing
- √ Fast fading
- ✓ Doppler effect
- ✓ Noise and Interference
- ✓ Antenna pattern embedding -Adaptive antenna systems
- √3D Beamform channels


Why companies invest on Channel Emulation tools?

QUALITY OF SERVICE & TIME TO MARKET = SUCCESSFUL BUSINESS.

Each Mobile/Base Station/Device version (HW/SW) must be tested for

- ✓ Receiver sensitivity and AGC
- ✓ Channel Estimation algorithms
- ✓ Min/max delay-Doppler (velocity scenarios)
- ✓ Diversity/MIMO DSP Algorithms
- ✓ Intersymbol/Intercarrier Interference, SNR mitigation
- ✓ Synchronization
- ✓ Radio Link Control, Radio Resource Management
- ✓ Mobility Management
- Network Vendor Interoperability, Device Vendor Interoperability

Radio Channel Emulation enables
quick End-to-End full signaling
Validation and Interoperability test in Lab

Standard & Advanced Test Scenarios
Field to Lab Test Scenarios

PROPSIM 5G Solutions for <u>Base Station</u> performance & device interoperability testing

Challenges

Complex RF conditions at field FR1 and FR2 Verification of the 5G NR BS performance

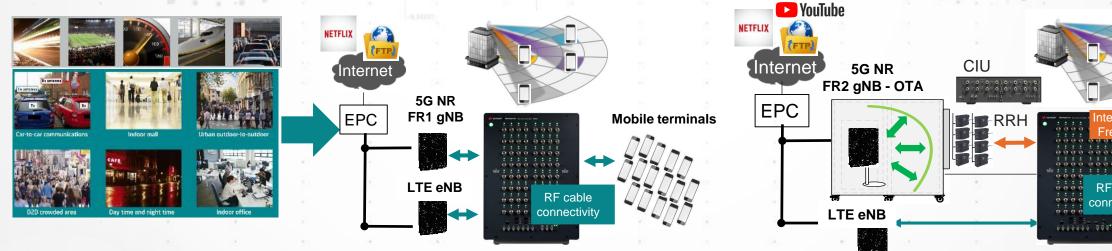
Sub-6GHz massive MIMO 16TRX, 32TRX, 64TRX, 128TRX MU-MIMO performance optimization up to 4/8/16/32 layers

mmWave hybrid beamforming with wide signal BWs

Beam management testing under various channel conditions Wide bandwidths up to 400 MHz per carrier, CA 800/1200 MHz Standalone (SA) and Non-Standalone (NSA) operating modes

Coexistence and mobility tests

Scheduling and load management at network level


Solutions

PROPSIM Geometric Channel Modeling (GCM) 5G Tools

- ✓ Channel modeling science ready & proven
- ✓ Antenna array modeling incl. patterns and DUT orientations in the scenario

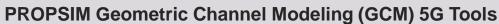
PROPSIM 5G Channel Emulation solutions

- ✓ Capacity 16/32/64/128 element massive MIMO solutions sub 6 GHz
- ✓ All 5G NR BWs from 5 MHz up to 400 MHz
- ✓ CA up to 1.2 GHz Contiguous, 16CC non-contiguous
- ✓ Sub 6 GHz and mmWave solutions (CIU + RRH)
- ✓ Complete performance test solutions with UEE's and real UE's
- ✓ RF, IF and OTA*) connectivity methods

UE(s) or UEE

PROPSIM 5G Solutions for <u>Device</u> performance testing

Challenges


5G Channel Modeling

Complex modeling science

5G Channel Emulation

- Realtime channel emulation
- Wide Bandwidths 100/200/400MHz
- CA 8CC/12CC/16CC
- Network Emulator and Real gNB support (NV-IOT)
- mmW OTA solutions
- Sub 6 GHz solutions

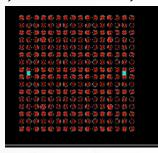
Solutions

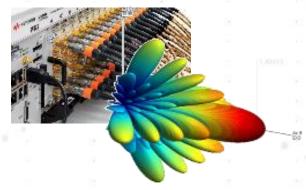
✓ Channel Modeling Science ready & proven

PROPSIM 5G Channel Emulation solutions

- ✓ Realtime very low insertion delay
- ✓ BW 100/200/400 MHz up to 1.2 GHz
- ✓ CA up to 12CC (1.2 GHz)
- ✓ Seamslessly integrates with UXM 5G, validated with 5G BTS
- ✓ Complete mmWave OTA solutions using CIU with RRHs
- ✓ Complete Sub 6 GHz performance test solutions
- ✓ Device NV-IOT solutions (Network Vendor Interoperability)

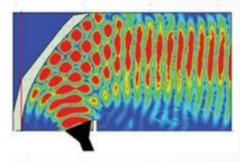
PROPSIM F64 Key Features

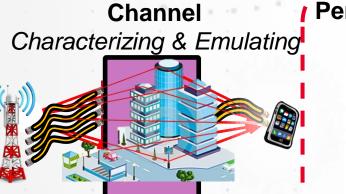

- Single F8800A platform up to 64TRX, 1024 MIMO ch.
 - HW configurations 8, 16, 24, 32, 40, 48, 56, 64 TRX
 - 64 TRX up to 100 MHz BW (160 MHz WLAN opt.)
 - 32 TRX up to 200 MHz BW
 - 16 TRX up to 400 MHz + 16 TRX up to 100/160 MHz BW
- Carrier Aggregation TDD & FDD
 - Non-contiguous CA up to 16CC
 - Contiguous up to 1200 MHz, other 200/400/600/800 MHz
- RF range up to 450 6000 MHz per TRX port
 - HIGH-IF 6-12 GHz with external HW (CIU)
 - mmW bands 28/39GHz with external HW (RRH)
- 5G Channel Models and test scenarios
- PROPSIM GCM 5G channel modeling software
 - Advanced channel modeling science ready & proven
 - TR38.901 channel models available
- Integrated calibration, no need for external VNA



7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity




Lots of Channels MIMO/Beamforming

Life Beyond Connectors

Over-the-Air

Performance on the Network

Network Emulation

Challenge: Performance on the Network

Challenges

- Validate designs when standards are incomplete and still evolving
- Test the many different use cases introduced with numerology
- Troubleshoot issues between RF, Baseband, and Protocol
- Validate PHY control, link adaption, beam management
- Optimizing performance to meet KPI goals

5G, Something new, something old

OTA

Range 1: Conducted (OTA is not precluded)

Range 2: Only OTA

(Note: Threshold frequency of conducted and OTA tests (i.e. [6] GHz) can be further discussed)

Functional Performance

Modem Test, Full Stack Testing, Data Throughput, Handover

Is my chipset working?

RF **Parametric**

EVM, ACLR PER, Emissions

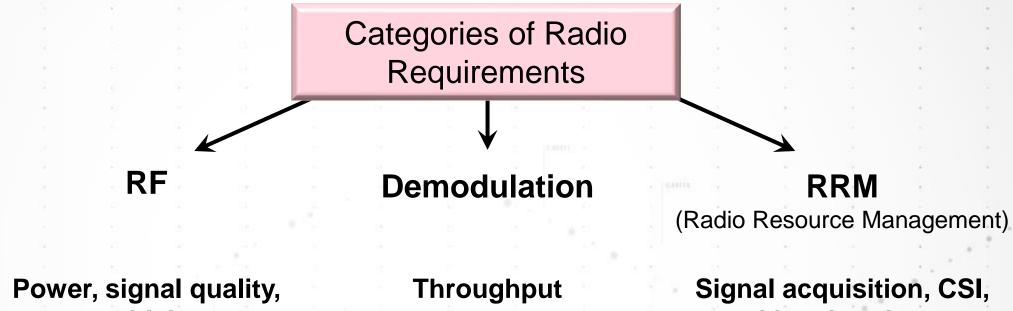
Is my RF working?

Antenna & Conformance **OTA**

> Antenna **Parameters** TRP, TIS

How good is my antenna?

MIMO OTA


Throughput, Virtual Drive Test,

OTA

How good is my device?

The OTA challenge

What to measure

sensitivity...

Basic line of sight no channel model

3D Spatial channel model

tracking, handover...


Dynamic multi-signal 3D spatial channel model

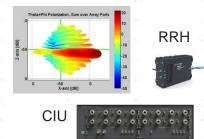
Get the fastest path to 5G Solutions

TARGETING CHIPSET AND DEVICE WORKFLOW

5G Interactive R&D Solutions

5G Device Acceptance Solutions

5G MFG Solutions


Keysight 1st Solutions across the entire device workflow

UXM 5G - E7515B

PROPSIM

RMTC / CATR / MPAC

EXM - E6640A

VXT-II M9410/11A

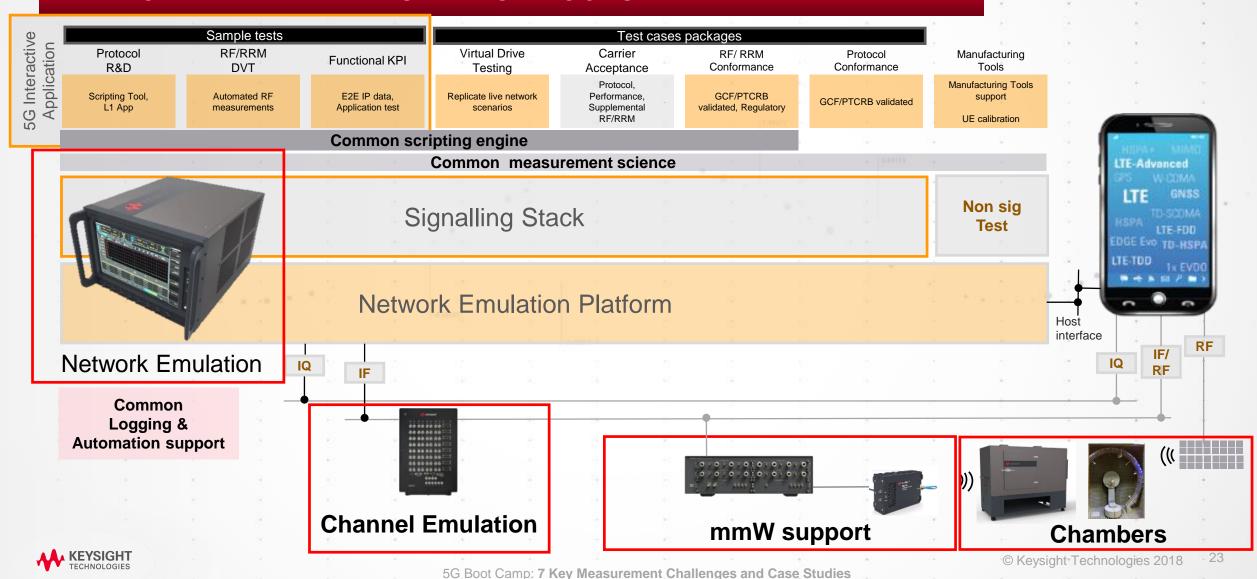
mmWave OTA Solutions

Network Emulator

Channel Emulator

Non-Signaling Solution

Seamless RF and Protocol Solution **Accumulates** engineering know-how


Embodies ecosystem insights Spans ecosystem with continuous releases

... ACCELERATE TOWARDS NEW 5G DEVICES

5G Network Emulation Test Solutions

PLATFORM HARDWARE BUILDING BLOCKS

5G Device End-to-End Workflow

PROTOCOL DEVELOPMENT

Network

Emulator

Emulator mmWave OTA Solutions

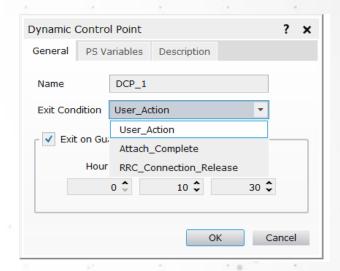
5G Interactive R&D

5G Device Acceptance

Early protocol development while keeping up with evolving 5G standards;

- Progress stack and gain insights to optimize performance
- Customize scripts, automate efficiently, and debug quickly
- Leverage work across workflow stages, stay current with standards cost effectively

Key Features:

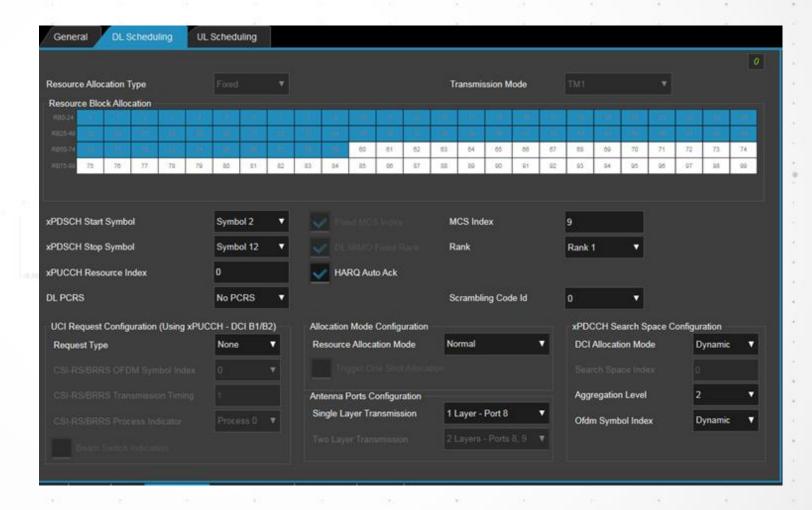

- ✓ Earliest availability of new 5G features
- ✓ Replicate desired network behavior whilst reducing test complexity with Built-in Protocol State Machine and Dynamic Control Points
- ✓ L1/L2 parameter change without programming
- ✓ Flexible automation and logging
- ✓ Results viewer

Sub-6 GHz and mmWave - Conducted and OTA

Replicate network behaviour

日

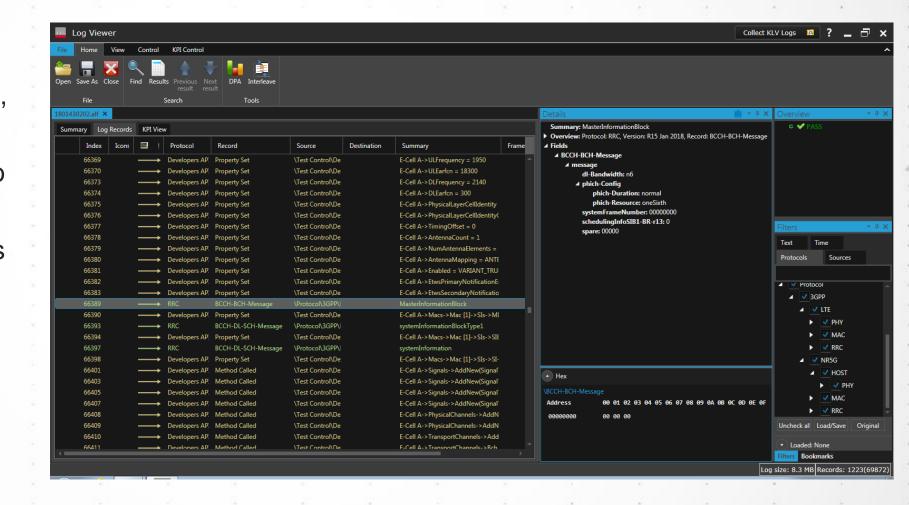
- Built-in Protocol State Machine and Dynamic Control Points simulates a "Live Network"
- Allows for interactive testing where the behaviour of a device can be investigated in an easy manner to facilitate debugging


Line	Time	Id	Direction	Details
1				Script Details [NR5G_LTE_PSCellAdd]
2				SIM Information [Explicitly defined]
3	00:00.00			5G User Prompt [Activate NR5G Cell]
4	00:00.00	NR-Cell A		Activate NR5G Cell [NR-Cell A :DL Power = -80 dBm/75kHz]
5	00:00.00	N-Cell A		5G DYNAMIC CONTROL POINT [Continue after User Action]
6	00:00.00			5G User Prompt [Start NR5GUEDemonstrator.exe]
7	00:05.00	E-Cell A		Activate LTE Cell
8	00:00.00	E-Cell A	SS> MS	RRC Connection Reconfiguration
9	00:00.00			5G User Prompt [Wait, Press Ok to Exit]

Modify network behaviour easily

題

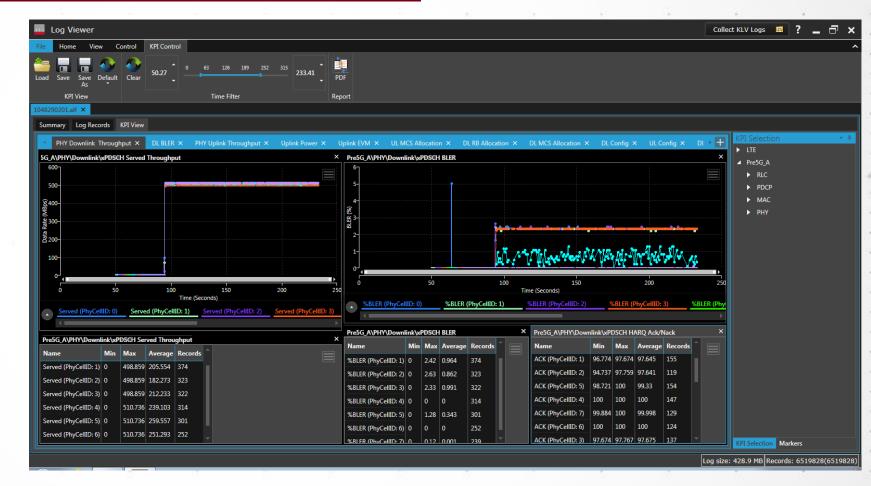
- Allow dynamic L1/L2
 parameter changes without
 the need for programming
- Very useful in early development testing of prototypes



5G logging

HH.

- Displays all layers of the protocol stack; PHY, MAC, RLC, RRC, PDCP
- Filtering allows the user to view the data of interest
- Advanced search features and bookmarks make debugging easier
- User friendly as all information needed is available in one view



Results viewer

- Customised view with multiple graphs
- Enhanced debugging as relationship between various KPIs such as data rate and BLER can easily be seen graphically
- Link from graph to relevant location in the log to facilitate debugging
- Report generation to share results with other teams

5G Device End-to-End Workflow

R&D CHALLENGES - RF DVT

mmWave OTA Solutions

5G Interactive R&D

5G Device Acceptance

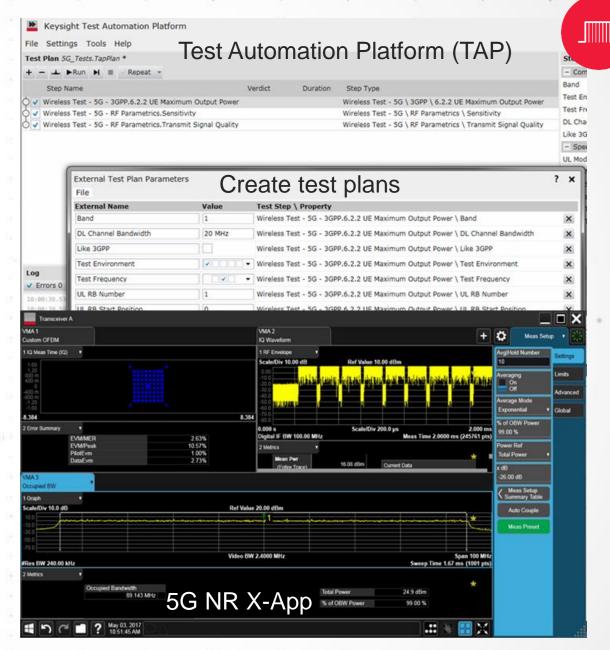
More RF bands, wider bandwidths, and beamforming;

- Wideband calibration and verification
- New waveforms, flexible numerology
- Beamforming & beam management
- More band combination complexity

DVT = Design Validation Test

Key Features:

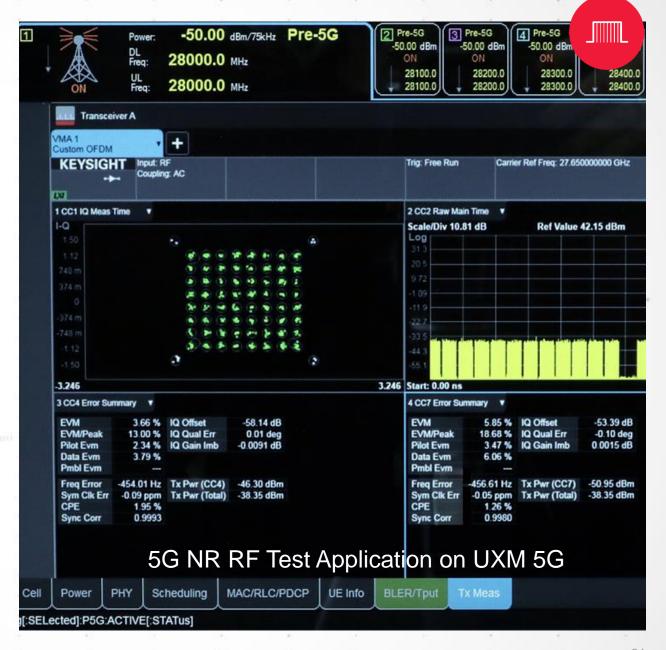
- ✓ 5G NR support
- ✓ RF Test Application
- ✓ Automation & Scripting
- ✓ Pre-conformance ready
- Traceability to conformance


Sub-6 GHz and mmWave - Conducted and OTA

5G NR support

5G RF DVT TOOLSET

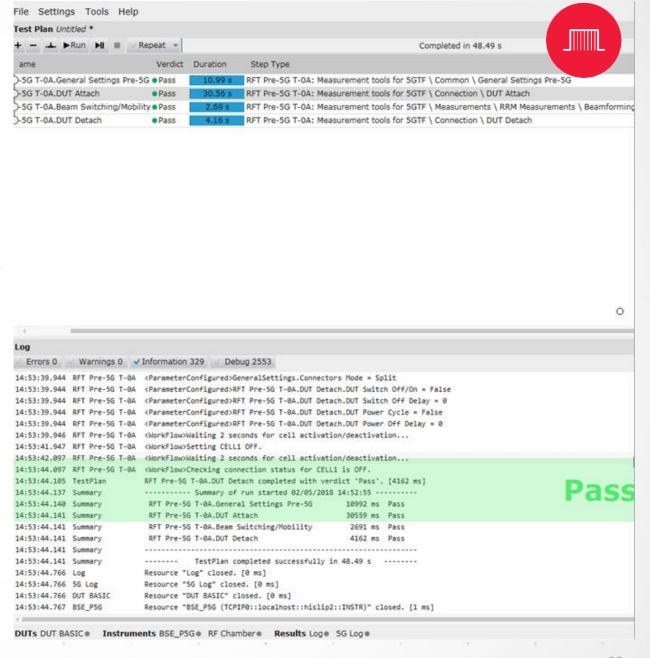
- Sub-6 GHz and mmWave
- Deployed standalone or with LTE anchor
- Flexible numerology
- High directivity phase-array antennas and beamforming
- OTA test challenges



RF Test Application

5G RF DVT TOOLSET

- Flexible manual testing
- On-a-call UL RF measurements
- Common Keysight measurement science through X-Apps measurement application
- Automate test set up Keysight 5G
 Interactive tools



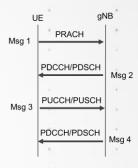
Automation & Scripting

5G RF DVT TOOLSET

- Automate complete test set up including device and mmWave OTA measurements
- Test cases scripting with Keysight measurement tools or customized test steps
- Examples
- Initial Access
- Beam Management
- Downlink Channels demodulation
- UE reporting
- Total Radiated Power (TRP)

Test Application

SIGNALING

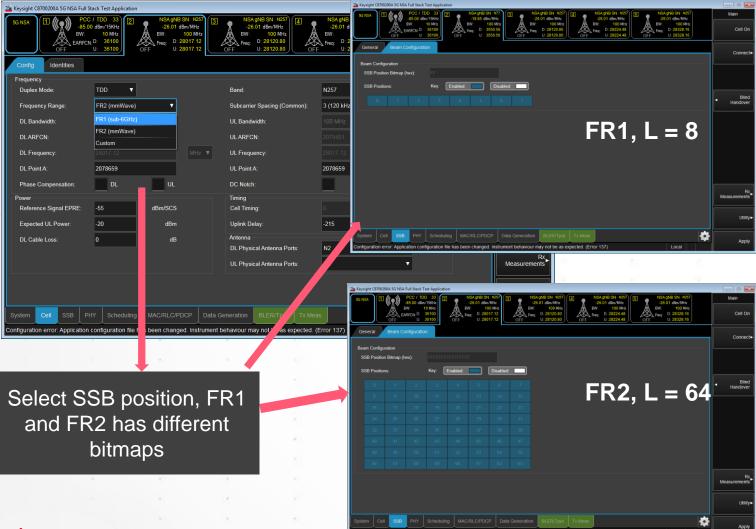


Establish the 5G NR Call

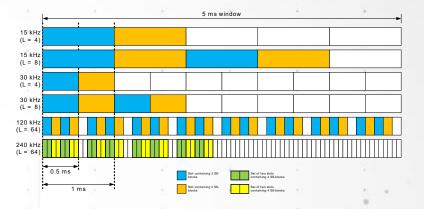
- Configure; Cell, Beam, DL/UL channels and signals, scheduler
- Complete PRACH

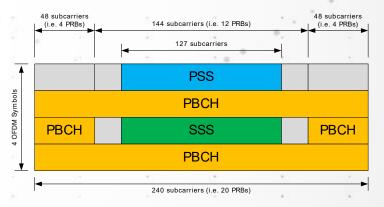
Establish a 5G NR Call

SINGLE CELL AND CARRIER AGGREGATION



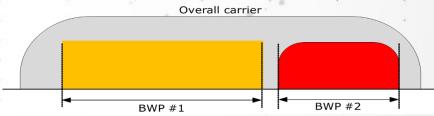
Note: Maximum number of Cells may depend on technology, bands and HW configuration




Establish a 5G NR Call

BEAM CONFIGURATION




SSB includes 1 PSS, 1 SSS and 2 PBCH OFDM symbols the random access, transmitted over the same single antenna transmission scheme

Establish a 5G NR Call

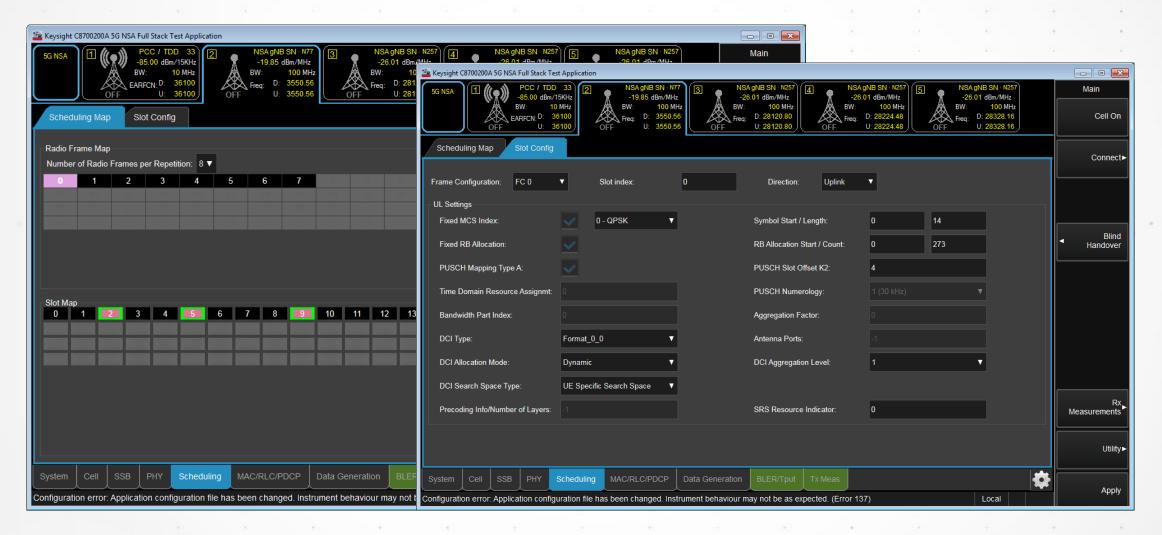
PHYSICAL LAYER PARAMETERS

Define DL and UL Bandwidth parts; starting CRB, duration expressed in PRBs, Sub Carrier Spacing, Code Prefix

Each BWP consist on a group of contiguous PRBs

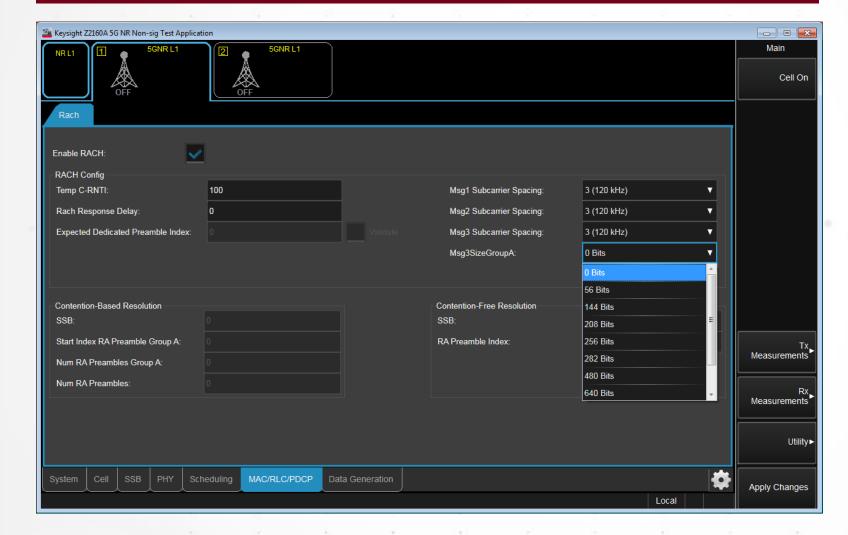
Establish a 5G NR Call

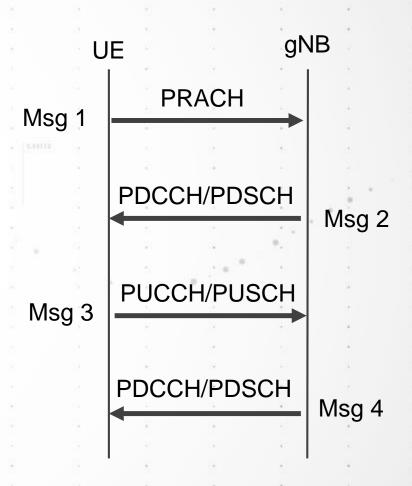
PHYSICAL LAYER PARAMETERS



HARQ, DL and UL channels and signals configuration

Establish a 5G NR Call

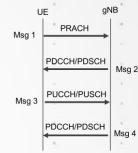

SCHEDULING

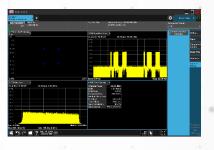


Establish a 5G NR Call

RANDOM ACCESS CHANNEL

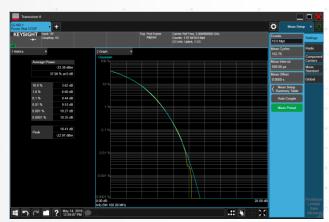
Test Application


RF TEST

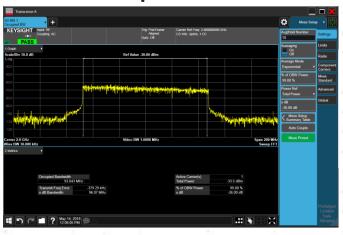

- **Establish the 5G NR Call**
 - Configure; Cell, Beam, DL/UL channels and signals, scheduler
 - Complete PRACH
- **Test Tx and Rx**
 - Transceiver; Channel Power, EVM, Freq Error, In-band emissions, ACLR, SEM, OBW
 - Receiver; BLER statistics

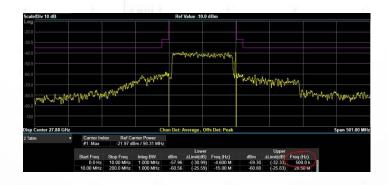
More RF bands, wider bandwidths, and beamforming

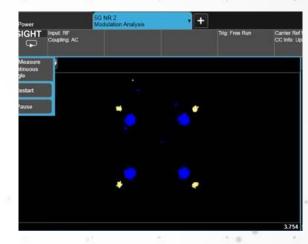
RF tests


RF test on-a-call

TRANSMITTER


Channel Power


Power Statistics


Occupied Bandwidth

Spectrum Emission Mask

Modulation Parameters

IQ Waveform

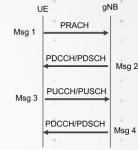
RF test on-a-call

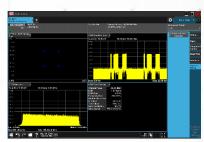
RECEIVER

Rx Measurements

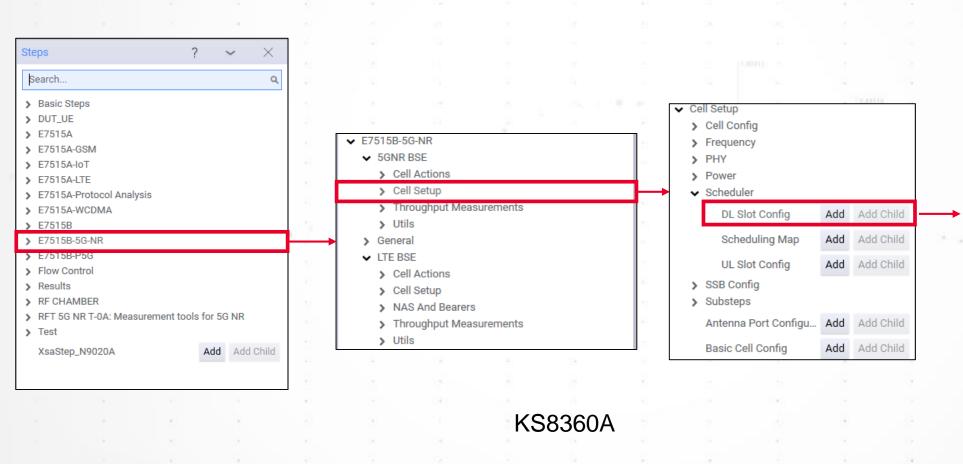
- Cell Power Selection
- Sensitivity through ACK/NACK count
- BLER is the Rx performance metric
- Throughput

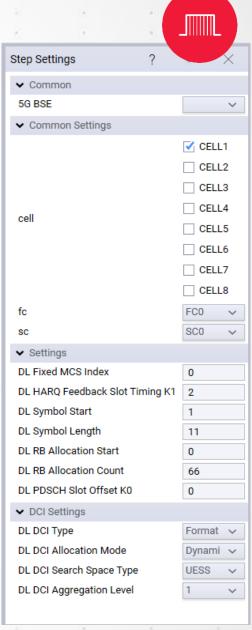
More RF bands, wider BW, BF


SIGNALING RF TEST


- 1 Establish the 5G NR Call
 - Configure; Cell, Beam, DL/UL channels and signals, scheduler
 - Complete PRACH
- 2 Test Tx and Rx
 - Transceiver; Channel Power, EVM, Freq Error, In-band emissions, ACLR, SEM, OBW
 - Receiver; BLER statistics
- 3 Automate test for thorough verification
 - Create Scripts using Keysight Measurement blocks
 - Test with power, frequency sweeps
 - Test Executive Environment

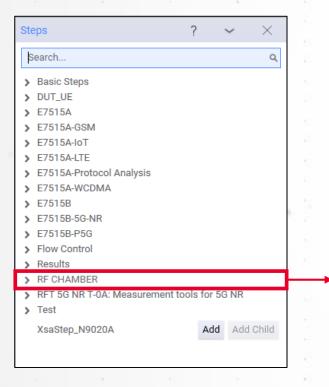
More RF bands, wider bandwidths, and beamforming

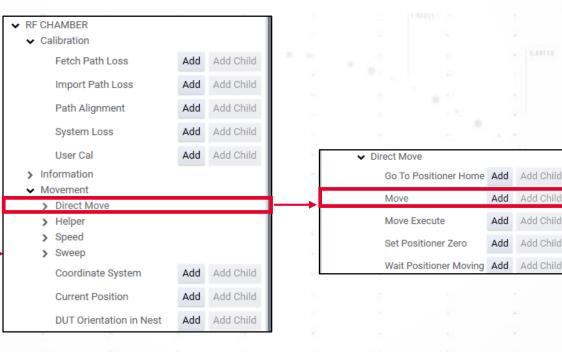


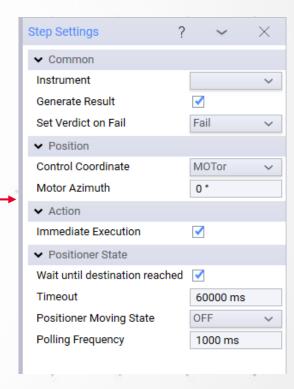


UXM 5G TAP Plugin

TAP STEPS TO CONTROL UXM 5G AND CHAMBER






UXM 5G TAP Plugin

TAP STEPS TO CONTROL UXM 5G AND CHAMBER

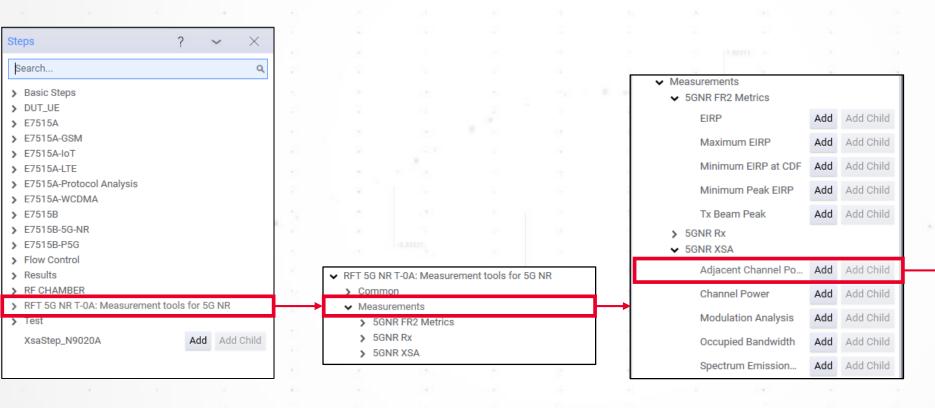
Add Child

Add Child

5G NR T-0A: Measurement tools

~

OF V


RF V

Up v

28 GH:

200 MI

TAP STEPS TO MEASURE RF TX AND RX CHARACTERISTICS

C870250AA RFT

Step Settings
✓ Common
XSA 5GNR

Sweep Settings

▼ Radio Settings
RF Port

Measurement Direction

Frequency Settings

Center Frequency

Measurement Span

Measurement Settings

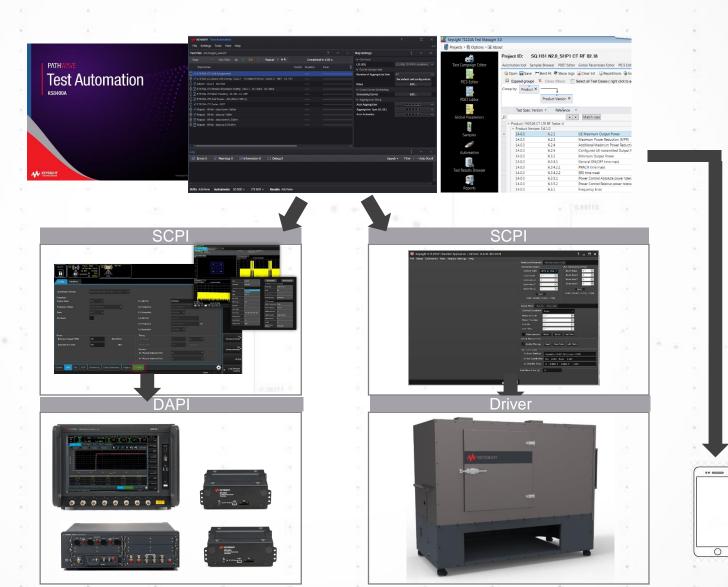
Multicarrier Measurement

Continuous Measurement State

5G NR T-0A: Measurement tools

TAP PLAN EXAMPLES

Step: + — Test Plan: ♣ ▷ ▷ □ ✓ Repeat ▼			Completed in 0.00 s		
Step Name	Verdict Duration	Flow	Step Type	± +	
✓ LTE cell configuration	_		Basic Steps \ Log Output		
▼ RFT 5G NR T-0A.LTE Cell Configuration - CELL1	_		RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ LTE Cell Configuration	-	
✓ RFT 5G NR T-0A.LTE DL Scheduler Configuration	_		RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ LTE DL Scheduler Configuration	**	
✓ RFT 5G NR T-0A.LTE UL Scheduler Configuration	_		RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ LTE UL Scheduler Configuration	ND NOA Command	
✓ NR cell configuration	_		Basic Steps \ Log Output	NR NSA Connect	lion
✓ RFT 5G NR T-0A.NR Cell Configuration - CELL2	_		RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ NR Cell Configuration		
✓ Set UE State			Basic Steps \ Log Output		
▼ E7515B-5G-NR.LTE.NR Cell Reconfiguration with SgNB Addition	_		E7515B-5G-NR \ LTE BSE \ Cell Actions \ BSE Procedures \ NR Cell Reconfiguration with SgNB Addition		. "
▼ RFT 5G NR T-0A.NR Set UE State			RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ NR Set UE State		•
✓ If Verdict (NR Cell Connected)			Flow Control \ If Verdict		
✓ Set Measurement Conditions	_		Basic Steps \ Log Output	Measurements C	onditio
▼ RFT 5G NR T-0A.NR Set Measurement Conditions			RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ NR Set Measurement Conditions	modediemente e	oriantio
✓ Search TX Beam Peak			Basic Steps \ Log Output	1	10
▼ RFT 5G NR T-0A.OTA Positioning: Spherical Sweep			RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ OTA Positioning		14
▼ RFT 5G NR T-0A.Tx Beam Peak			RFT 5G NR T-0A: Measurement tools for 5G NR \ Measurements \ 5GNR FR2 Metrics \ Tx Beam Peak	Decitioning	
✓ Positioning and measurement	_		Basic Steps \ Log Output	Positioning	
▼ RFT 5G NR T-0A.OTA Positioning : Direct Move			RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ OTA Positioning		
✓ Set UE State Disconnect			Basic Steps \ Log Output	7.1	170
▼ RFT 5G NR T-0A.NR Set UE State IDLE			RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ NR Set UE State	*	
▼ RFT 5G NR T-0A.NR Set UE State IDLE			RFT 5G NR T-0A: Measurement tools for 5G NR \ Common \ NR Set UE State	4	
✓ E7515B-5G-NR.LTE.NR Cell Reconfiguration with SgNB Addition	_		E7515B-5G-NR \ LTE BSE \ Cell Actions \ BSE Procedures \ NR Cell Reconfiguration with SgNB Addition	Measurement	
✓ E7515B-5G-NR.Activate Cells			E7515B-5G-NR \ General \ Cell Actions \ BSE Procedures \ Activate Cells	THE GOOD STREET	8
▼ E7515B-5G-NR.Activate Cells	_		E7515B-5G-NR \ General \ Cell Actions \ BSE Procedures \ Activate Cells	7.0	


RF DVT Toolset

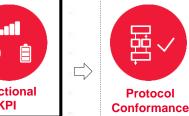
Solution

ion Components

E7515B

5G Device End-to-End Workflow

FUNCTIONAL KPI



mmWave OTA Solutions

5G Interactive R&D

Support for sustained maximum E2E throughput, meet power consumption goals;

- Stress test the device at maximum. E2E data throughput
- Benchmark battery life performance for different 5G use cases

KPI = Key Performance Indicators

Key Features:

5G Device Acceptance

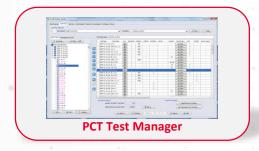
- ✓ Easy to use GUI enables complex tests without the need to define protocol scripts
- ✓ Network configurations optimized to measure device performance
- ✓ Throughput, Battery life, Beam management
- ✓ Flexible automation, including use of external measurement equipment
- ✓ Simple Test case development
- ✓ Use results viewer for off line analysis

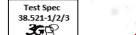
Sub-6 GHz and mmWave - Conducted and OTA

5G Device End-to-End Workflow

DEVICE ACCEPTANCE

5G Interactive R&D


5G Device Acceptance



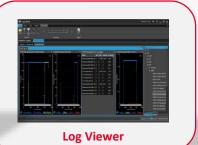
Protocol

RF Rx/TX Test cases

Test Spec 38.521-4 Future

Performance testing

RF/RRM

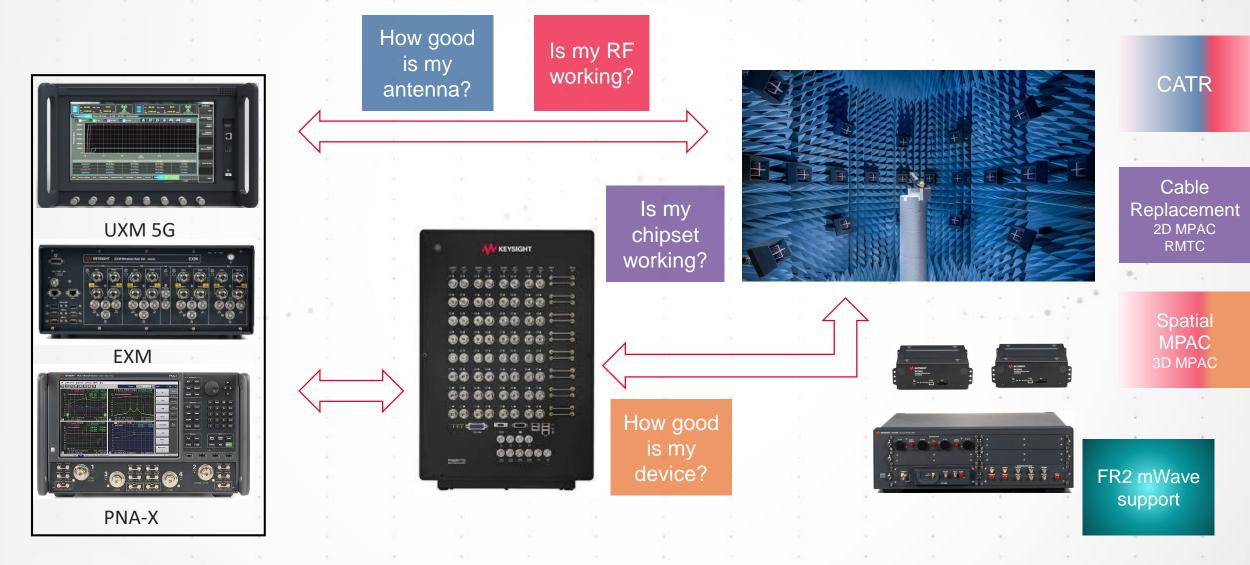


Radio Resource Management (RRM)

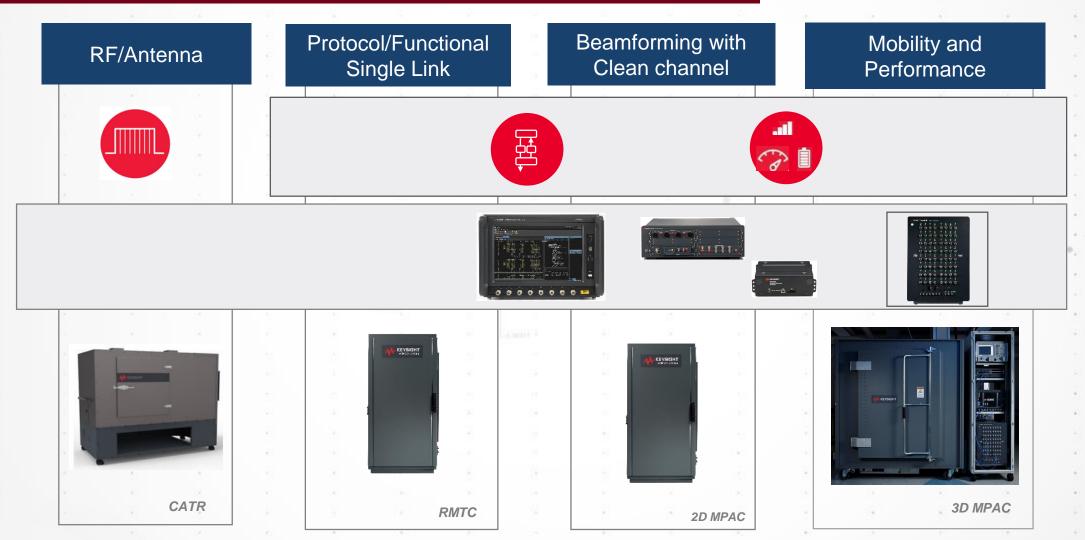
Case Study: 5G Chipset OTA Test

Demonstrated at MWC 2018

Challenge: Measure the 5G download throughput rate OTA with full protocol stack


Solution: CATR with UXM and Protocol Toolkit

- Qualcomm x50 5G Modem
- 4 Gbps download speeds
- Full protocol stack
- 8 x 100 MHz Carriers
- 800 MHz aggregated bandwidth


What does an OTA Solution Look Like

What are your mm-Wave OTA testing needs?

5G DEVICE END-END SOLUTIONS

5G NES Hardware Components

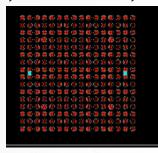
3 KEY BUILDING BLOCKS

UXM 5G Wireless Test Platform (E7515B)

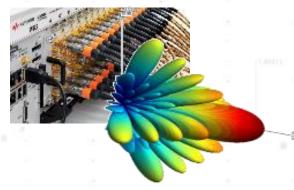
- <6GHz Frequency range
- Scalable bandwidth 8Tx/4Rx @800MHz, 4Tx/2Rx @1600MHz
- Integrated RFIO + Internal fading
- Support for RF, IF, Host and BBIQ interfaces (slow and full rate)
- Support for 10GbE connectivity

Common Interfacing Unit (E7770A)

- Same unit for both PROPSIM CE and UXM 5G
- Supports up to 8x heads, with scalability for more
- Flexibility to add new heads to support new bands
- Supports high IF connection (6-12 GHz)

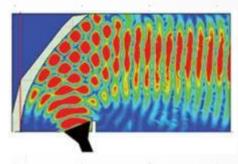

mmWave Transceiver for 5G (RRH)

- Supports 28, 39 and 40GHz bands
- Compact, bi-directional

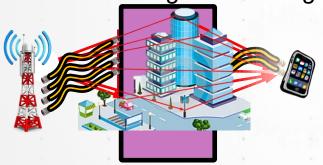


7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity



Lots of Channels MIMO/Beamforming


Life Beyond Connectors

Over-the-Air

Channel

Characterizing & Emulating

Performance on the Network

Network Emulation

Cost of Test

Assets, throughput

Challenge: Cost of Test

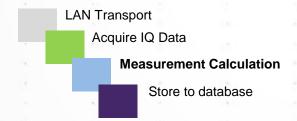
Challenges

- 5G NR Standard Complexity
 - LTE-A has grown to 3500 pages. 5G?
- 10x Bandwidth, 1-100x Channels
 - If measurements were slow for LTE, now what?
- Flexibility, Ease of Automation
 - How to quickly develop apps, APIs?
- Compressed timeframes, cost envelopes
 - How to continue to evolve with the Industry, 3GPP
 - How to transition from R&D → DVT → MFG volumes
 - How to leverage Industry 4.0 technologies & approaches

Enablers

- ✓ Greater modularity (SW, API, HW)
- ✓ Cloud acceleration
- ✓ Ease of Automation
- ✓ Data Analytics
- ✓ Services and whole-enterprise approaches

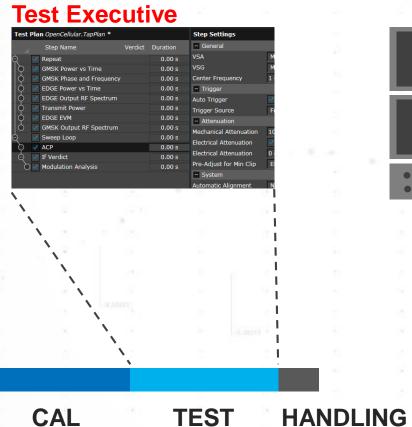
Case study – Test Acceleration of Individual Measurements



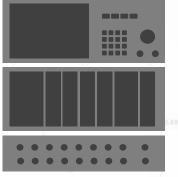
15 31ms 15 47.5 ms ← - - - - - - Reduced analysis time using cloud acceleration

263.5 ms

- ✓ Algorithm Acceleration
- ✓ Multi-threading & Server farms
- ✓ Centralized data processing & analytics


Testing Scenarios

BASELINE


Measurement calculation is performed on instrument (using X-App)

WARM-UP

IDLE

BUSY

HANDLING

Testing Scenarios

BASELINE

+ Add Server CPU

Instead of X-App processing on-instrument, process acquired IQ samples on external server

Test Executive

Process Algorithms

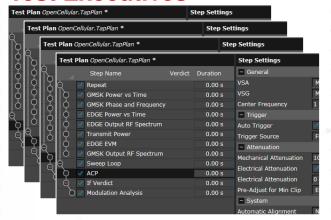
Acquire IQ data

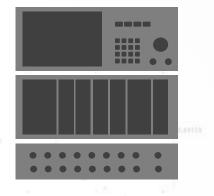
COSTOF TEST

-16%

Process in parallel Process on a fast CPU

Testing Scenarios




BASELINE

+ Add DUTs

Share a test station to test multiple DUTs in "pipeline" fashion

Test Executives

COST OF TEST

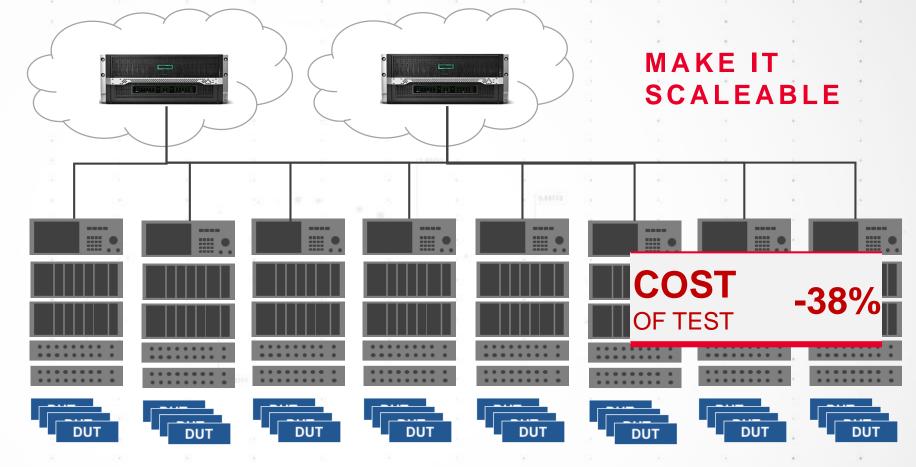
-26%

BUSY

BUSY

BUSY

BUSY

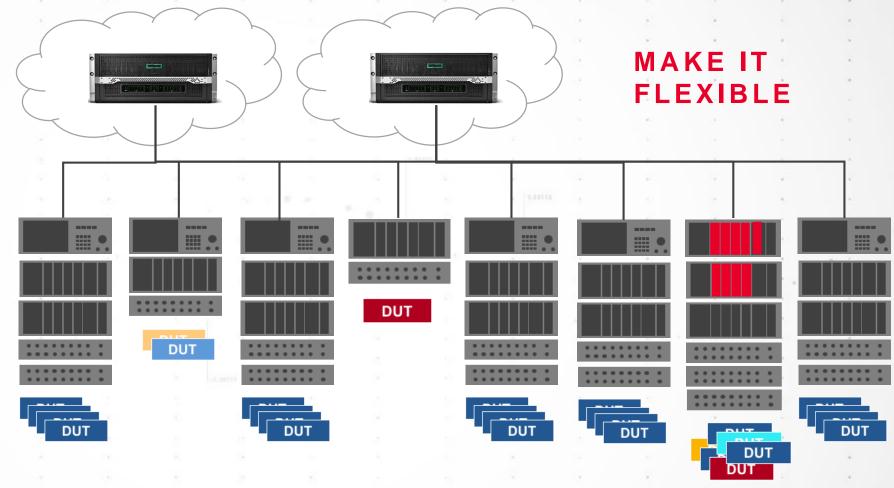


CLOUD

BASELINE

- + Add Server CPU
- + Add Instruments
- + Add DUTs

Share a test station to test multiple DUTs in "pipeline" fashion

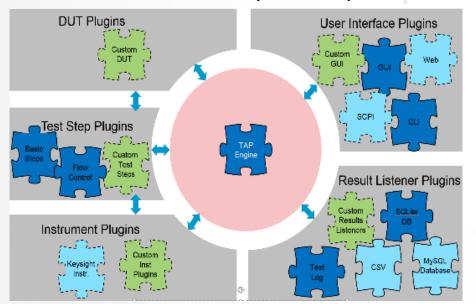

CLOUD

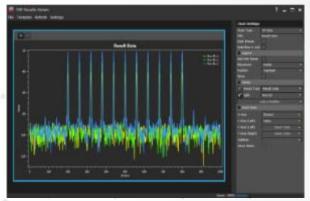
BASELINE

- + Add Server CPU
- + Add Instruments
- + Add DUTs

Test development / test execution are decoupled from test system configuration.

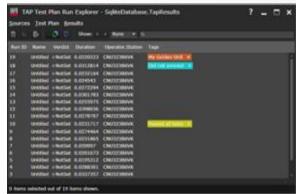
Test systems can be "software defined" to execute any test plan.




Automation: Simplified sequencing, test plan creation

KS8400A TEST AUTOMATION ON PATHWAVE (TAP)

- Fast execution and test flow analysis
- User interfaces
 - GUI
 - Command line interface
 - API
- Modular "plug-in" software architecture
- Microsoft .NET test step development



Powerful Speed and Results Analytics

Create Custom GUIs

Efficient Data Exploration

Advanced Analytics for RF Measurements

MULTIPLE MEASUREMENTS (ACPR, EVM, SEM, POWER)

FREQUENCY RESPONSE VS. Software Revision AND Vin

Big Data Insights

- Across org
- Across tools
- **Processes**
- Predictive

New Degrees of Scalability & Flexibility

MULTI-DUT

DUTS PER TEST STATION

MULTI-INSTRUMENT

INSTRUMENTS PER

TEST STATION

DUT

SERVER CPUs

ACCELERATION SERVER SPEED

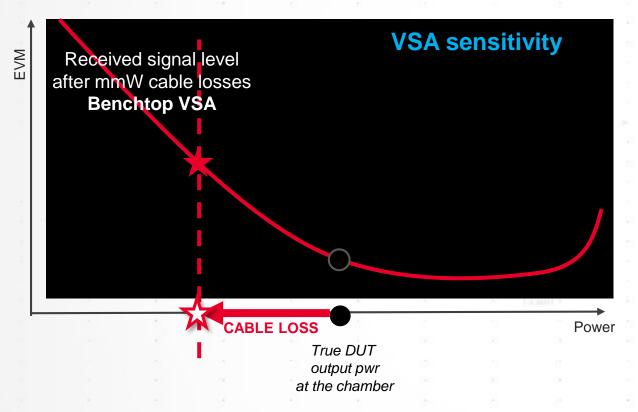
DUT

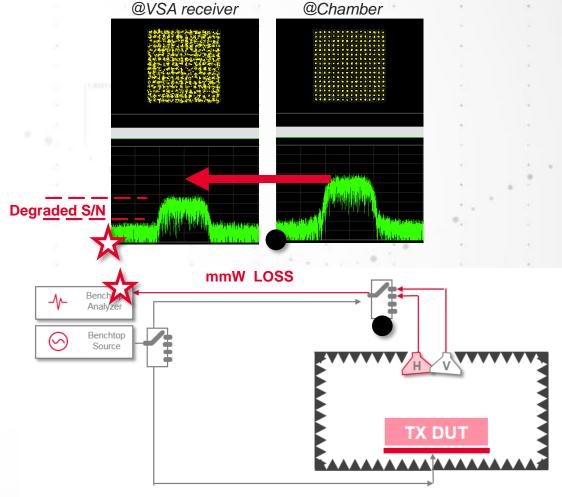
CPU SHARING

TEST STATIONS PER SERVER CPU

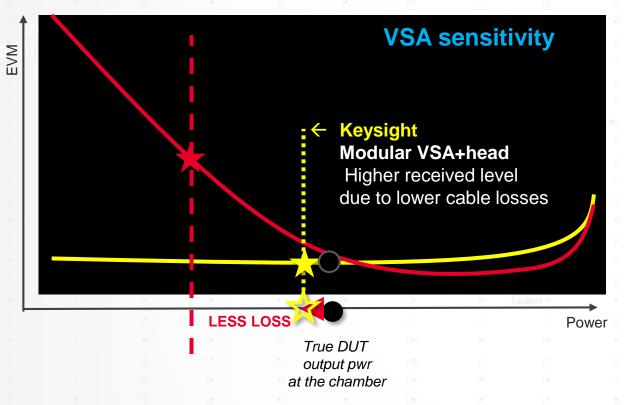
Introducing: S9100A 5G Multi-band Vector Transceiver

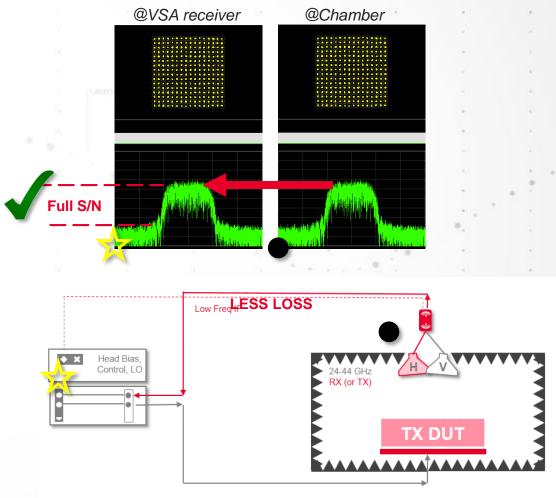
"LEAN ENOUGH FOR MFG - POWERFUL ENOUGH FOR DESIGN VALIDATION"

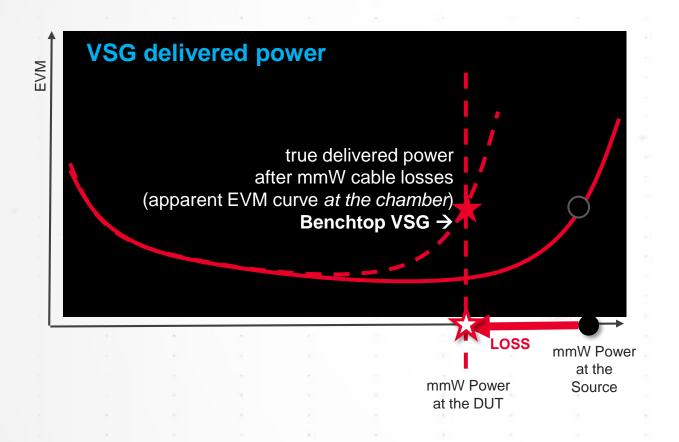


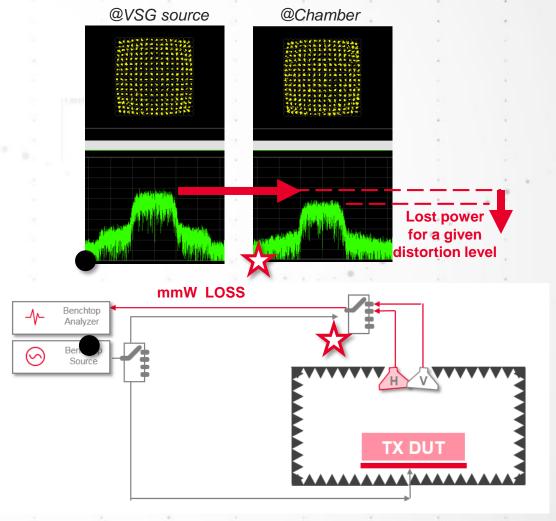

- ✓ Sub-6GHz, easily scalable to 24-44 GHz bands no wasted modules in order to cover <u>both</u> FR1, FR2 → highest asset utilization
- ✓ Extremely lean, compact design Smallest footprint, easy to expand up to 8x8 MIMO in 1 chassis without the size, cost, or overkill of R&D benchtop boxes
- ✓ High quality EVM, including millimeter wave
 < 0.7% at 28 GHz in loopback mode for accurate DVT and fewer false positives in MFG
 (5G NR signal, 100MHz bandwidth, OFDM signal type with 12dB PAPR)
 </p>
- ✓ Fast and Easy to Automate ("cloud ready")
 - Blazing fast PXIe transfer rates & clean API streamline your 5G automation
 - Accelerate your 5G DVT, then transition quickly to MFG (time to market)
 - ✓ Flexible and Versatile ("OTA ready")

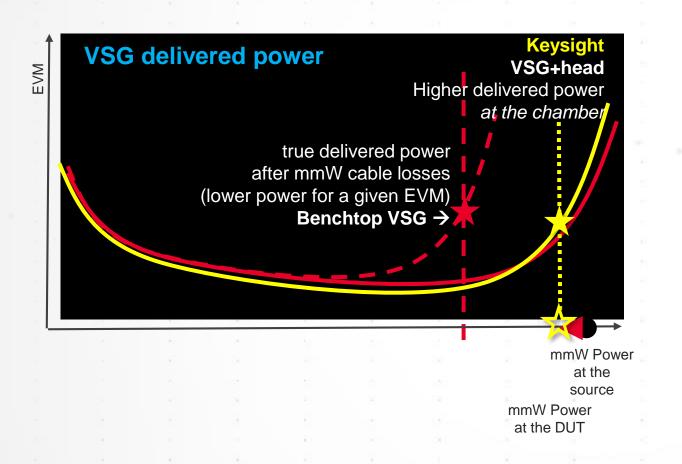
 Remote millimeter wave heads deliver highest OTA measurement quality at the chamber
 - ✓ Keysight system integration
 - S9100A systems can be customized.
 - Delivered pre-assembled, calibrated, with typical system-level performance

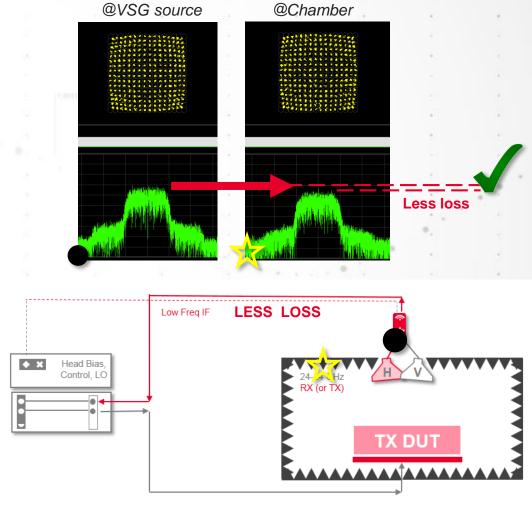

VSA SENSITIVITY - BENCHTOP WITH HIGH LOSSES




VSA SENSITIVITY - REMOTE HEAD WITH LOW LOSSES




VSG DELIVERED POWER - BENCHTOP WITH HIGH LOSSES



VSG DELIVERED POWER - REMOTE HEAD WITH LOW LOSSES

The NEW M9410A/11A PXIe Vector Transceiver

5G

OPTIMIZED FOR 5G DVT & VOLUME MFG

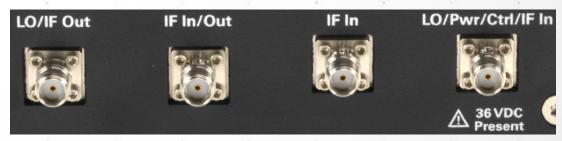
Best-in-class integrated vector transceiver for DVT & volume Mfg, with combined advantages of performance, cost and size:

- Frequency range up to 6 GHz with 2-slot size
- Frequency extension to cover mmWave (FR2) with M1740A mmWave transceiver
- Built-in 1.2 GHz signal generation and analysis bandwidth
- Phase coherent & timing synchronization for multi-channel RF tests
- Built-in Half Duplex (HD) port for different test scenarios.
- Signal Studio for signal creation, and 89601B and X-Series measurement apps for signal analysis
- The 3-slot VXT M9411A adds optical data Interface for IQ data streaming, and custom FPGA (PathWave FPGA) for measurement acceleration and proprietary signal processing for extended applications beyond measurement.

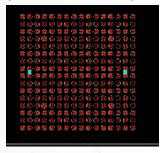
M1740 mmW Vector Transceiver head

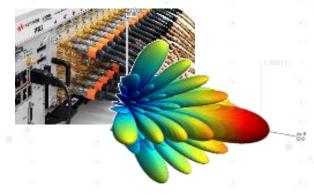
EXTENDING YOUR FR1 SYSTEM TO FR2

- One head covers FR2 bands (24-44 GHz)
 (No need to purchase multiple heads)
- Integrated bi-directional ports, with TX & RX swapping (select V vs. H polarizations)
- Integrated signal conditioning (gain & attenuation)

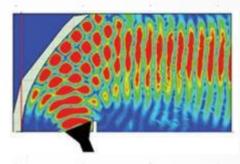

OTA-Ready design (low loss at IF, configuration flexibility)

FRONT PANEL - mmW to DUT


BACK PANEL – LO, IF, Control


7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity


Lots of Channels

MIMO/Beamforming

Life Beyond Connectors

Over-the-Air

Channel

Performance on the Network

Network Emulation

Cost of Test
Assets, throughput

Field Testing and Drive Test

Solutions for Full Wireless Network Lifecycle

FROM RF MEASUREMENTS TO ANALYTICS

Network
Optimization &
Roll-out

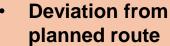
Network Benchmarking

Field Testing/ Drive Test Challenges

Drive Preparation

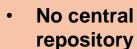
Drive Test

Data Management


Reporting

- Script errors
- Setup time
- Drive Route preparation

2 people in car

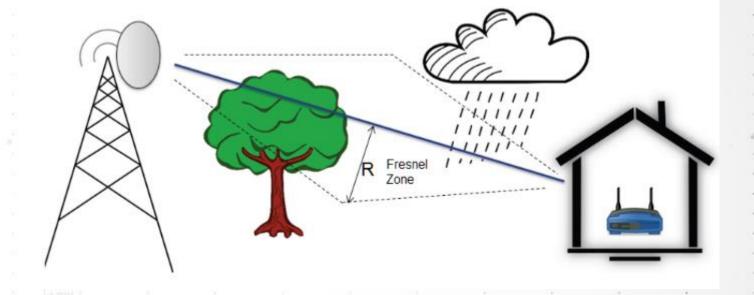


- Tool issues:
- Antennas
- o Instabilities


Manual management

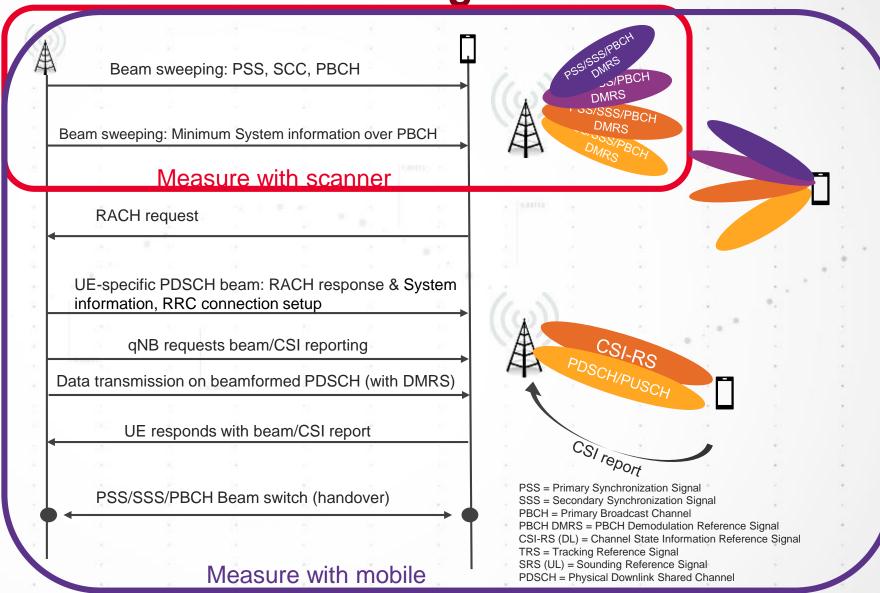
 Can be done late after drive test





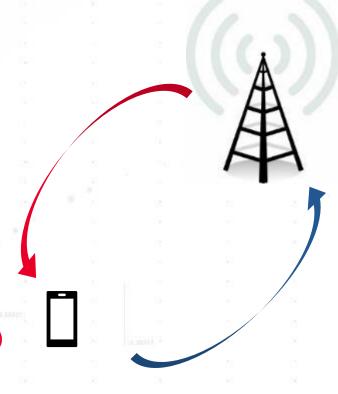
mm-wave Challenge

FCC 5G frontier bands up to 71 GHz


- 5G mm-wave link budget is quite different from traditional sub 6 GHz wireless link budget
- Extra losses due to rain fade, shadowing loss, foliage, atmosphere absorption, humidity and, Fresnel blockage

5G NR – Beam Based Network Coverage

- Paradigm shift from cell coverage to beam coverage
- There are many kind of beams, static and dynamic, mobile, and network side
 - DL reference beams
 - UL beams (UE/CPE-specific)
 - DL/UL traffic beams
 - Vendor-specific



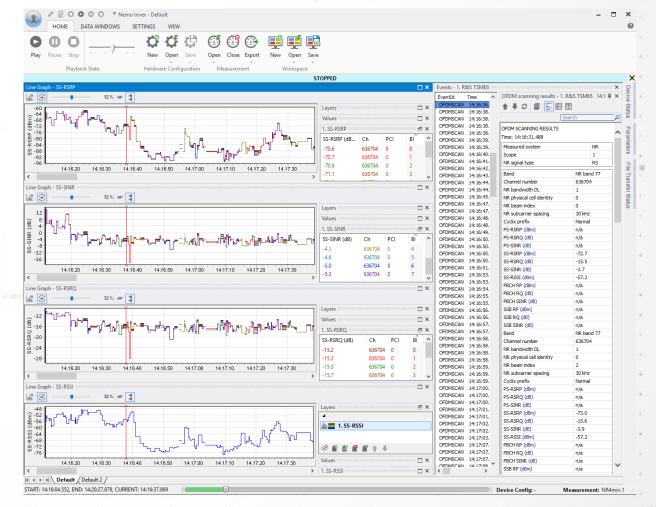
5G L1 channels and signals

DOWNLINK

- Common (visible in scanner and UE) measurements):
 - PSS (Primary Synchronization Signal)
 - SSS (Secondary Synchronization Signal)
 - PBCH (Physical Broadcast Channel)
- User level (UE measurements only):
 - CSI-RS (Channel State Info Reference Signal)
 - DMRS (Demodulation Reference Signal)
 - PTRS (Phase-tracking Reference Signal)
 - PDSCH (Physical UL Shared Channel)
 - PDCCH (Physical UL Control Channel)

UPLINK

- User level (UE measurements only)
 - PUSCH (Physical UL Shared Channel
 - PUCCH (Physical UL Control Channel)
 - PRACH (Physical Random Access Channel)
 - DMRS (Demodulation Reference Signal)
 - PTRS (Phase-tracking Reference Signal)
 - SRS (Sounding Reference Signal)



3GPP 5G NR Scanner Measurements with Nemo Outdoor

SS BLOCK REFERENCE BEAM DEMODULATION- MULTIPLE BEAMS

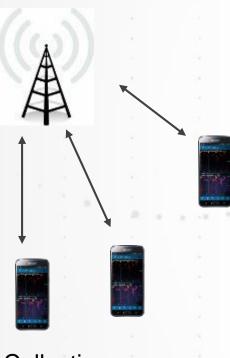
- Reference beam coverage and quality measurements, demodulated reference signals
- Reported per Sync beam (SS block):
 - Channel
 - Physical Cell Identity (PCI)
 - Beam ID (BI)
 - SS-RSRP
 - SS-RSRQ
 - SS-CINR
 - RSSI

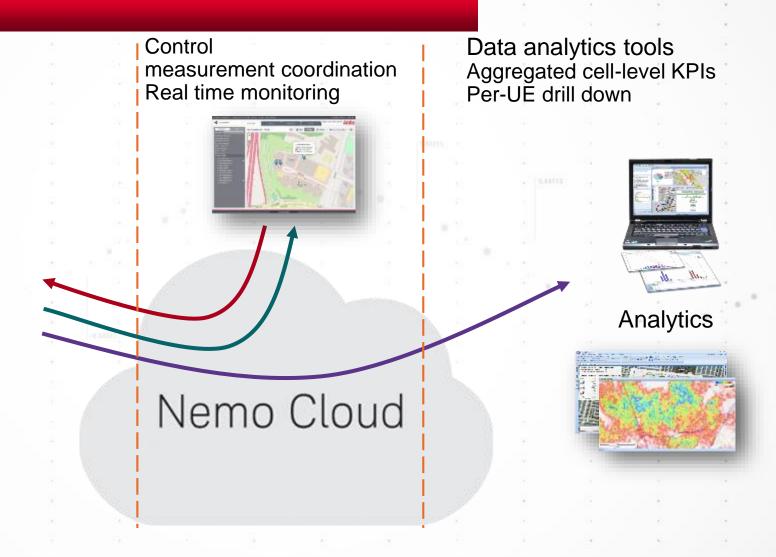
View from Nemo Outdoor, measuring one cell (PCI 0) with 8 beams, beam ids 0-7

3GPP 5G NR Scanner Measurements with Nemo Outdoor

SINGLE BEAM WITH DRIVE ROUTE

Massive MIMO Field Testing Challenges

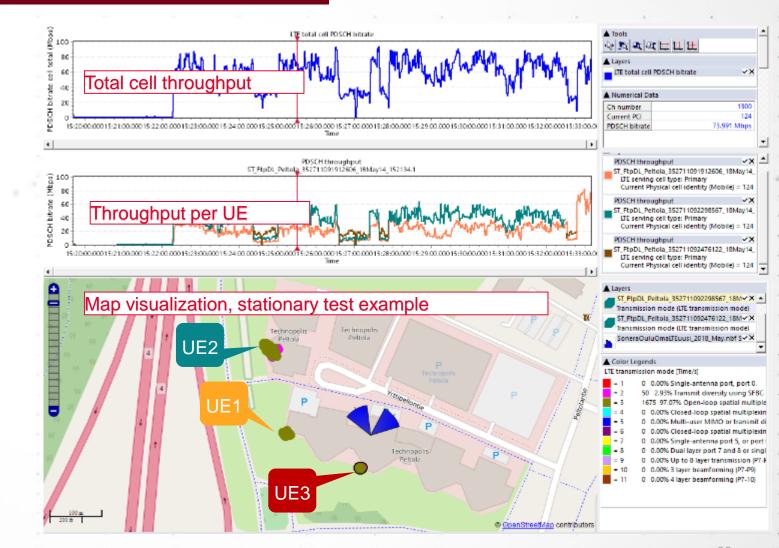

- Massive MIMO is a cell capacity feature for sub 6GHz
- Gain achieved only when multiple UEs simultaneously generating downlink traffic
- Many variables:
 - Distribution of users in the cell (horizontal and vertical)
 - Multi-path radio environment
 - Network configuration
 - NEM implementations
- Field testing needed to verify the capacity gain provided
- Test setup is complicated, involving multiple UEs doing coordinated active data transfers


Massive MIMO Cell Testing

FIELD TESTING

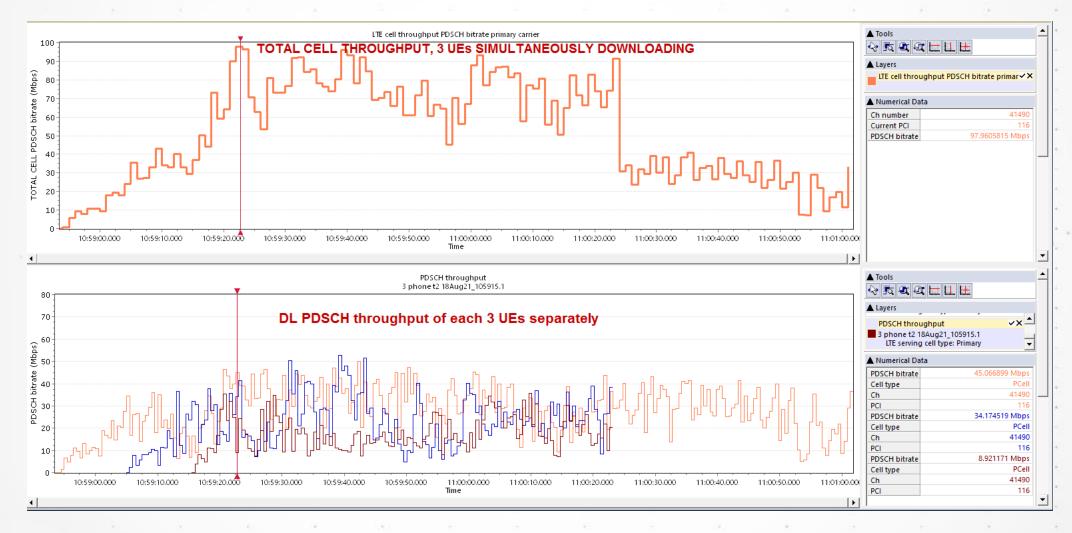
Field units distributed in the cell area

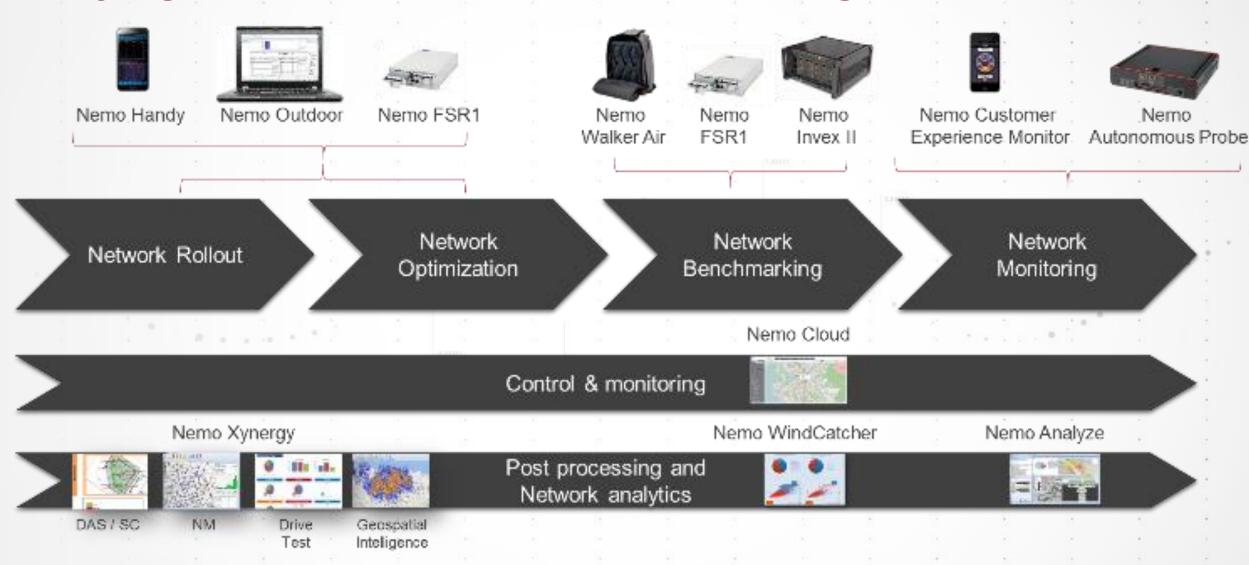
Collection



Massive MIMO Cell Testing

ANALYTICS


- Automated aggregation of cell-level **KPIs**
 - Total cell throughput
 - PRB utilization
 - Etc.
- Per-UE analysis
 - SNR, RSRQ, transmission mode, throughput, Rank, number of MIMO streams
- Map visualization of all UEs


LTE TDD mMIMO Testing

TOTAL CELL THROUGHPUT

Keysight Nemo wireless network testing solutions

