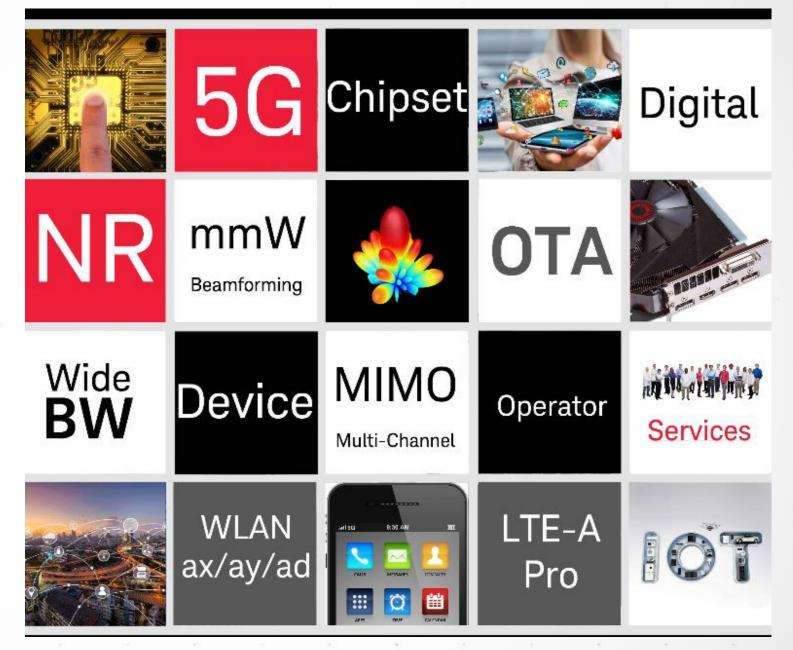
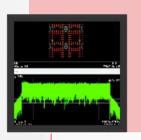
5G Boot Camp


1.02411

Agenda

• Q/A


KEYSIGH1

- 5G Market Trend, New Radio Specification, and Implications
- 7 Key Measurement Challenges and Case Studies

3GPP Release 15 Specification

INITIAL RELEASE DEC 2017, FINAL RELEASE LATER 2018

Waveform

CP-OFDM (UL/DL): QPSK, 16QAM, 64QAM and 256QAM

DFT-s-OFDM (UL): π/2-BPSK, QPSK, 16QAM, 64QAM and 256QAM

Flexible Numerology

 10
 10
 10
 10

 51 L1 b
 10
 10
 10
 10

 40
 10
 10
 10
 10

 41
 10
 10
 10
 10

 45
 L40
 10
 10
 10
 10

 45
 L40
 10
 10
 10
 10
 10

 95
 L40
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 1

15 kHz*2ⁿ Sub-carrier spacing
1ms subframe
10 ms Frame
Normal & Extended Cyclic Prefix

New Spectrum

Sub-6 GHz (FR1) and 24.25 to 52.6 GHz (FR2) Up to 400 MHz Bandwidth Up to 8 Component Carriers Bandwidth Parts enables multiplexing of services

Massive MIMO and Beam Steering

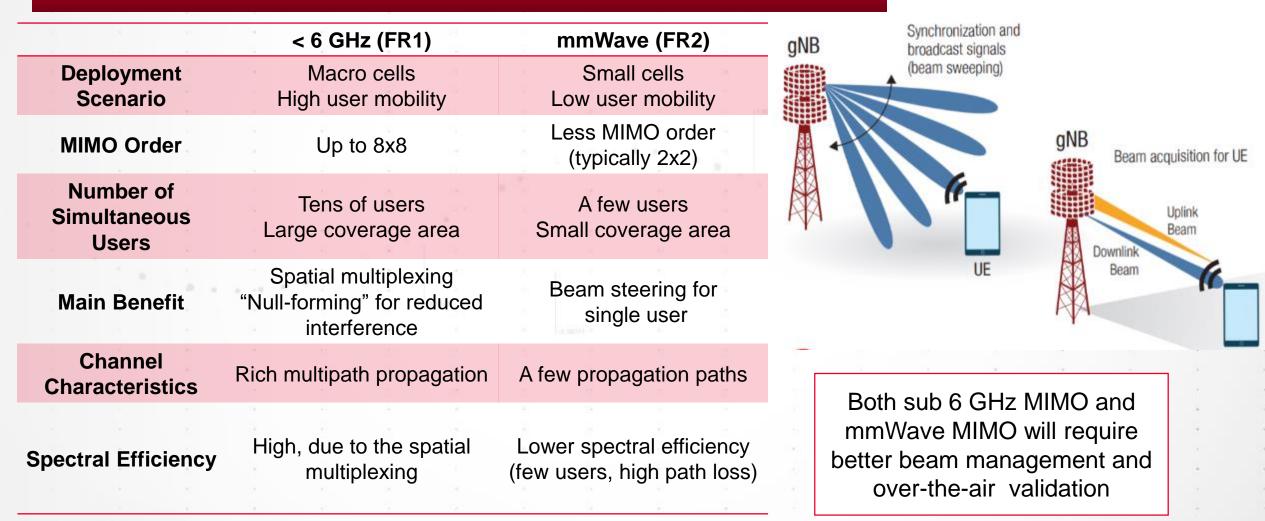
Up to 8x8 MIMO Much greater # antennas on gNB than UE Beam sweeping

Spectrum

KEY ATTRIBUTES OF RELEASE 15

- 5G NR Release 15
- A revolution from LTE-A
- Key challenges
 - Bandwidth
 - mmWave frequency
 - # subcarriers

(EYSIGH1


 Implementation of 256 QAM and MIMO

Frequency	Frequency Range 1: 450 MHz – 6000 MHz Frequency Range 2: 24.25 to 52.6 GHz			
Transmission Bandwidths (CC)	FR1: 5 to 100 MHz FR2: 50 to 400 MHz			
Sub Carrier Spacing	FR1: 15 kHz, 30 kHz, 60 kHz FR2: 60 kHz, 120 kHz, 240 kHz			
Maximum number of Subcarriers	3276 (up to 4096 FFTs)			
Carrier Aggregation	Up to 8 carriers, maximum BW of 400 MHz (FR1) and 1200 MHz / 1600 MHz (FR2)			
Waveform & Modulation	 CP-OFDM (UL/DL): QPSK, 16QAM, 64QAM and 256QAM DFT-s-OFDM (UL): π/2-BPSK, QPSK, 16QAM, 64QAM and 256QAM 			
ΜΙΜΟ	Up to 8 layers in downlink, up to 4 layers in the uplink			

Spectrum – Massive MIMO and Beam Steering

DIFFERENT IMPLEMENTATIONS UNDER 6 GHZ & MMWAVE

5G New Radio Challenges Across the Spectrum

4.4 - 4.9

GHz

ISM

SUB 6 GHZ AND MMWAVE

0.6 GHz 2.5 GHz

3.4 - 3.8 GHz

Sub-6 GHz

eMBB, URLL - Massive MIMO to increase capacity and throughput

Challenges

- 5G NR coexistence with LTE and Wi-Fi
- Multi-mode devices
- Massive MIMO performance
- RF performance at higher frequencies and bandwidth
- UE battery life

mmWave

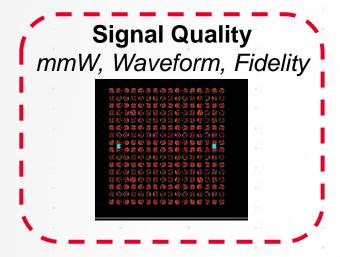
28 GHz

eMBB - Fixed wireless broadband or low mobility

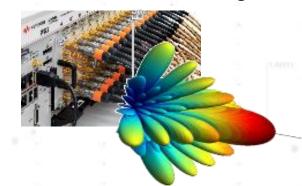
Challenges

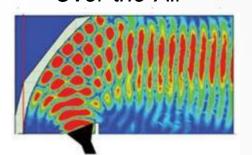
 Wideband signal quality, mmWave frequencies and very large bandwidths

39 GHz


- mmWave initial access and beam management QoS
- Measurements without connectors
- 3D spatial channels

64 -71 GHz


5G New Radio 7 Key Measurement Challenges


7 Key Measurement Challenges

Lots of Channels MIMO/Beamforming

Life Beyond Connectors Over-the-Air

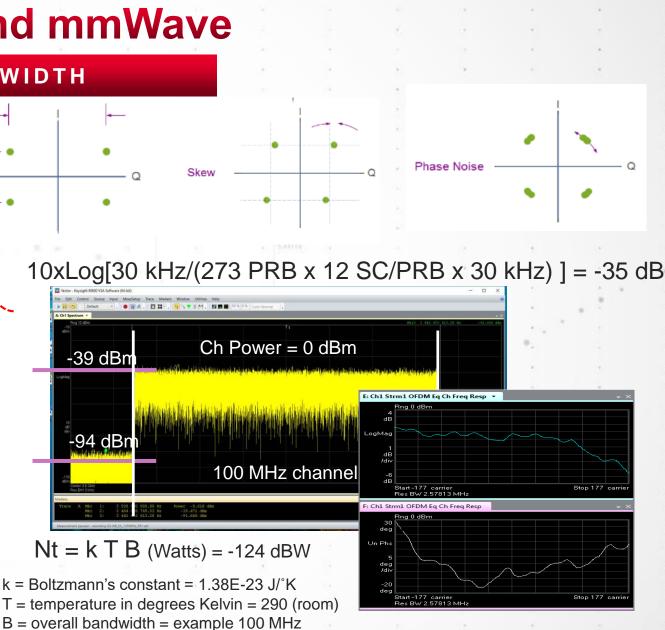
Channel Characterizing & Emulating

Performance on the Network Network Emulation

Cost of Test Assets, throughput

Field Testing and Drive Test

Challenge: Signal Quality and mmWave


15 kHz

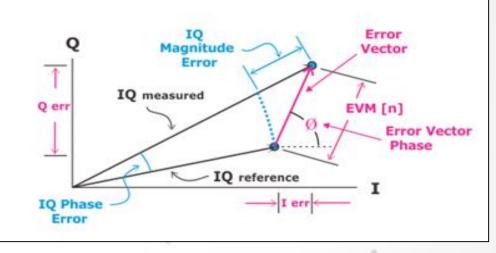
Gain Imbalance

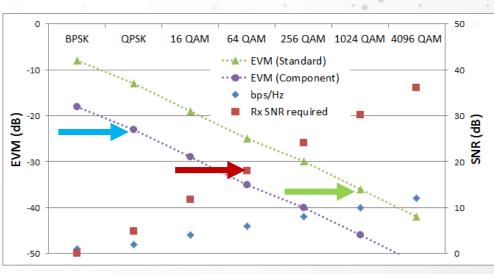
60 kHz

CHALLENGES WITH MMWAVE AND BANDWIDTH

- IQ modulator errors
- Phase noise
 - OFDM close subcarrier spacing
- Distortion
 - Overdriving causes compression and distortion
- Signal-to-Noise Ratio
 - Wide BW systems with high noise figure coupled with low RF power levels
- Amplitude flatness and phase linearity
 - Frequency response of cables, gain horn, amplifiers, filters, signal generator, signal analyzer, etc

How do you Know if the Signal is Good?


EVM IS THE STANDARD MEASURE OF SIGNAL QUALITY


EVM (Error Vector Magnitude): The normalized ratio of the difference between two vectors: IQ measured signal & IQ reference (IQ reference is calculated value)

What's considered Good?

- For the link to work: "At the limit for the scenario"
- For component test: "10 dB better than the system as a whole"
- For system test: "3 dB better than the source from radio standard" 5G NR Release 15 EVM Requirements

2	Mod	Required EVM				
	Pi/2 BPSK		30% (-5.2 dB)			
R)	QPSK		17.5 % (-15.1 dB)			
	16QAM		12.5 % (-18.1 dB)			
	64QAM		8 % (-21.9 dB)			
	256QAM		3.5 % (-29.1 dB)			

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Signal Quality at mmWave Frequencies

CHALLENGES AND TIPS

IQ modulator errors

Phase noise

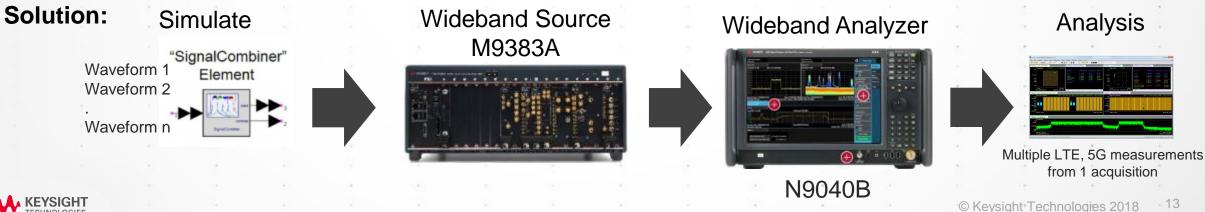
- OFDM close subcarrier spacing
- Distortion
 - Overdriving causes compression and distortion
- Signal-to-Noise Ratio
 - Wide BW systems with high noise figure coupled with low RF power levels
- Amplitude flatness and phase linearity
 - Frequency response of cables, gain horn, amplifiers, filters, signal generator, signal analyzer, etc

Tips for mmWave Measurements

- Minimize signal generation impairments correcting for IQ modulation, phase noise, flatness and linearity errors
- ✓ Ensure adequate antenna gain
- Select test equipment with EVM and Signal-to-Noise Radio better than your DUT
- ✓ Ensure proper use of cables and connectors for the given frequency
- Perform system level calibration to ensure measurement is at DUT plane

Case Study: Testing for Coexistence

Challenge: Dual-Mode operation. Verify performance in- and out-of-band to reduce interference


- How will the waveforms interact?
- How much out-of-band suppressions will be required?
- How much guard band will be required?
- How can different scenarios be explored?

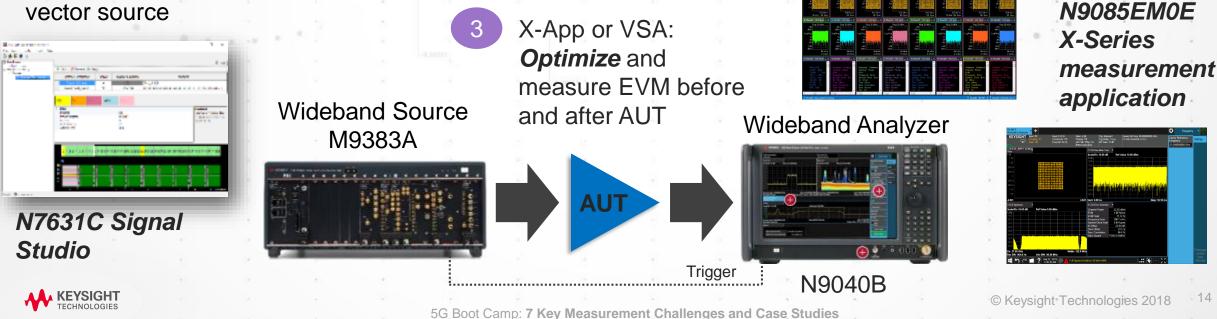
Analysis

from 1 acquisition

13

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Challenge: EVM Optimization @ mmWave


OPTIMIZE EVM USING X-APPS AND VSA

Amplifier EVM performance;

• 5G NR DL 1CC/8CC, 64/256 QAM (high crest factor), 100 MHz bandwidth, 28 GHz & 39 GHz (FR2)

89601B VSA with opt BHN

Generate 5G NR waveform and playback on wideband vector source

Use Signal Studio generated

.SCP file to configure 5G NR EVM

measurement in VSA and X-apps

M9383A PXI VECTOR SOURCE

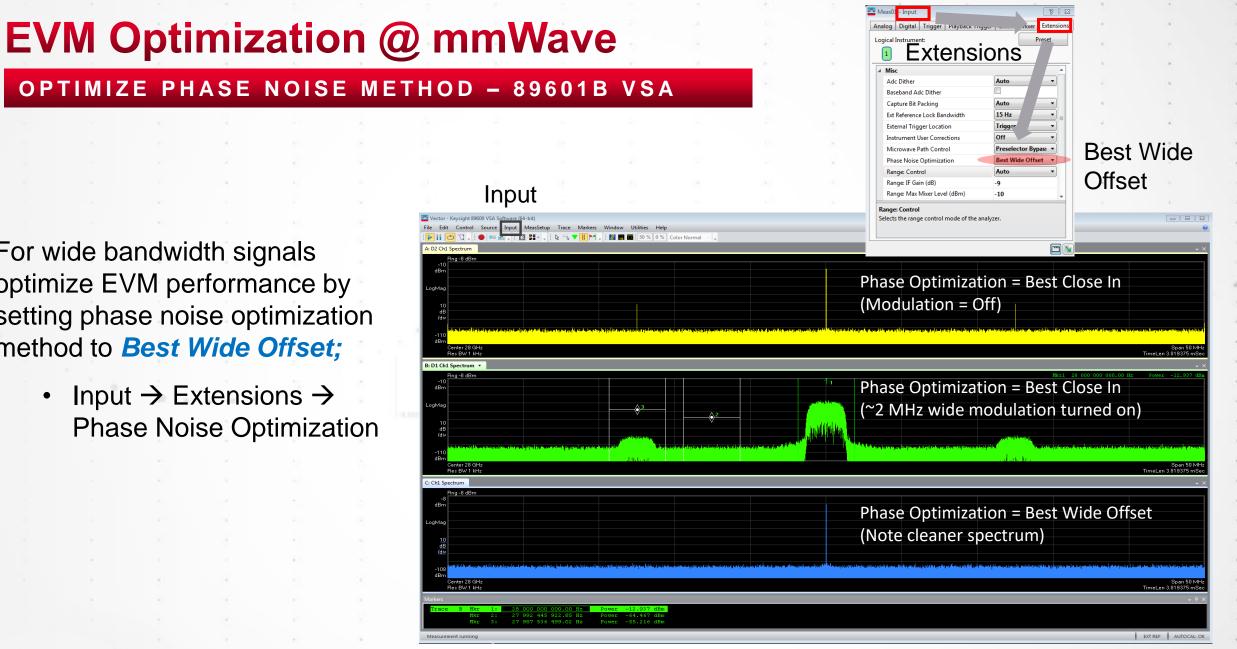
M9383A is optimized by default. Simply do the following:

- Set Frequency
- Set Amplitude
- Set ALC:
 - Freq < 20 GHz: Turn off
 - Freq > 20 GHz: Set to very slow
- Select Waveform
- Turn ARB & RF on

RF			-				IQ Arb	
	20 CU-		ARB Source: C:\Data\	T\5G NR DL 100M	Hz FR2 64Q.wfm		Impairments	
Frequency:	28 GHz	×	Markers:				External IQ	
							ARB Modulation	
Amplitude:	-7 dBm	Ŷ	ALC Hold Trigger:	Marker 4		Y	Triggers	
							Trigger Routing	
Attenuation:	0 dp	•	Pulse Trigger:	Marker 3		¥	Ext Trigger	
Attenuation:	0 dB	¥	Sync Output Trigger:	Marker 2		¥	Pulse Generator	
							AM	
Atten Hold:							FM	
Use Harmonic Filters:			Sample Rate:	122.88 MHz	÷		PM	
							Reference	
RF On:			RMS Power:	10.37 dB			Status	
DE Dalas Mada	Not Pulsed		Scale:	0.85			List	
RF Pulse Mode:	Not Puised		Baseband Power:	0 dB			Save / Recall	
	Power Search						Fixture Loss	
	Software Trigger		Offset Frequency:	0 Hz				
	Southare migger		Occupied Bandwidth:	122.88 MHz				
ALC			Invert I:					
On: 🕑	For modulated signals below 20GHz, us ALC Off and Power Search.	ie	Swap I and Q:	ö				
	y Slow		Play Start/Mode :	Immediate 🛛 👻	Continous	K.		
Hold Mode: Off			ARB On					
			Run IQ (OC Alignment Clear	IQ DC Alignment			
Int Ref DAC	ALC Algoment						ct to Periodic Calibration	

M9383A (MCS) is optimized right out of the box!

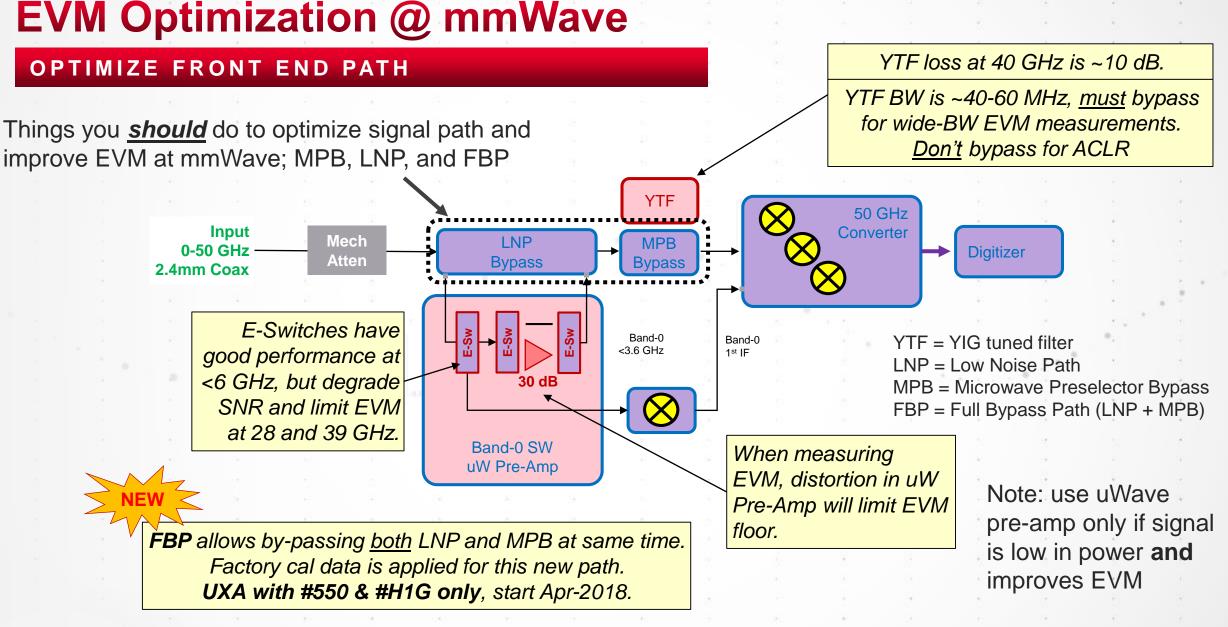
Note: you can also use the waveform Markers to trigger the PXA or UXA which greatly speeds up the demodulation measurements.



N9040B X-SERIES ANALYZER

Several things you can do to optimize EVM;

- Select frequency span that closely captures signal bandwidth
- Optimum phase noise method for wide bandwidth signals: Best Wide Offset
- Optimize front end path: if available use *Full Bypass Mode* (particularly at higher frequencies around 28 and 39 GHz) – <u>for EVM only</u>
- Optimize attenuator: find best level at signal analyzer *mixer input* for optimum EVM (same for ACLR)
- Optimize attenuator & IF gain: find best combination of both, rather than let Signal Analyzer pick IF gain

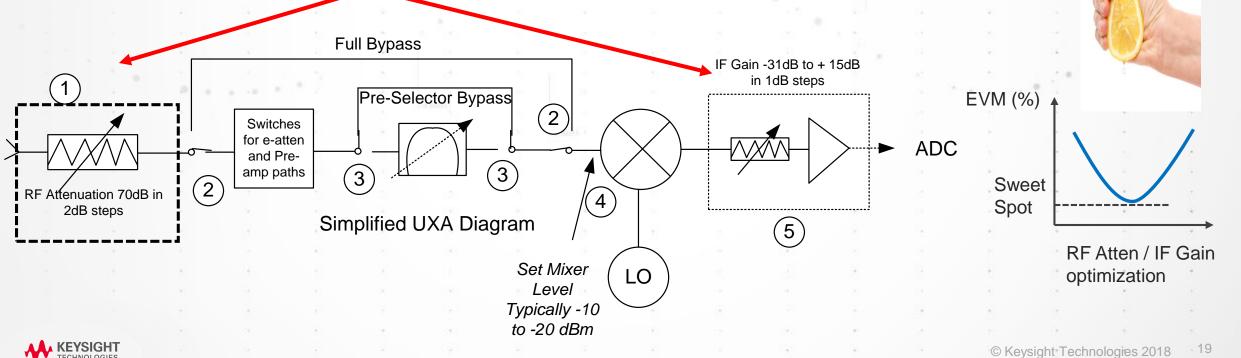

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

17 © Keysight Technologies 2018

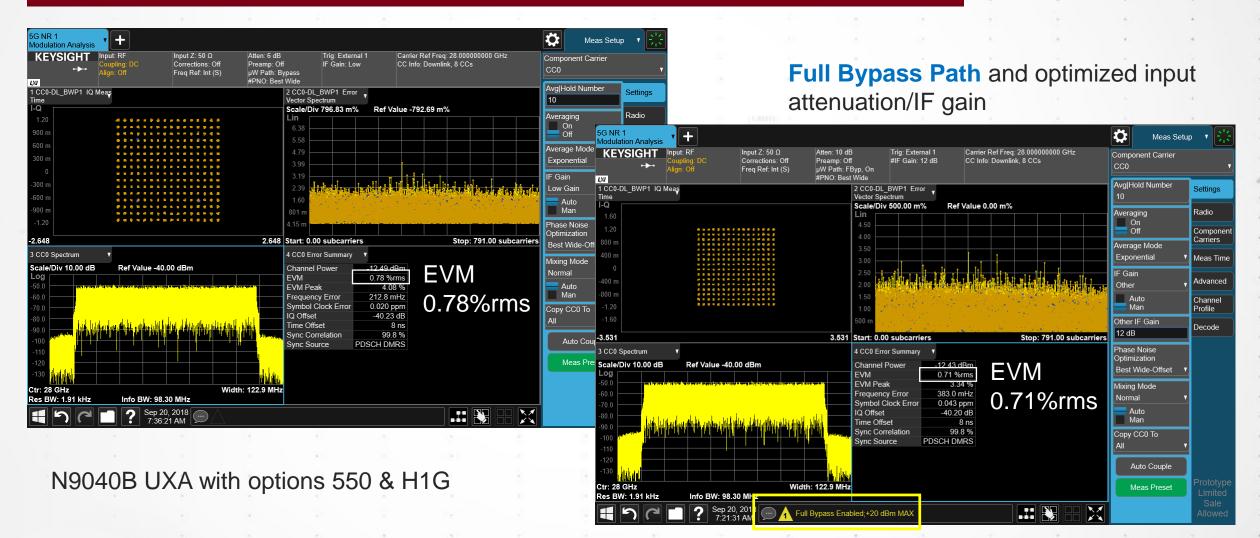
For wide bandwidth signals optimize EVM performance by setting phase noise optimization method to Best Wide Offset;

KEYSIGH

Input \rightarrow Extensions \rightarrow Phase Noise Optimization

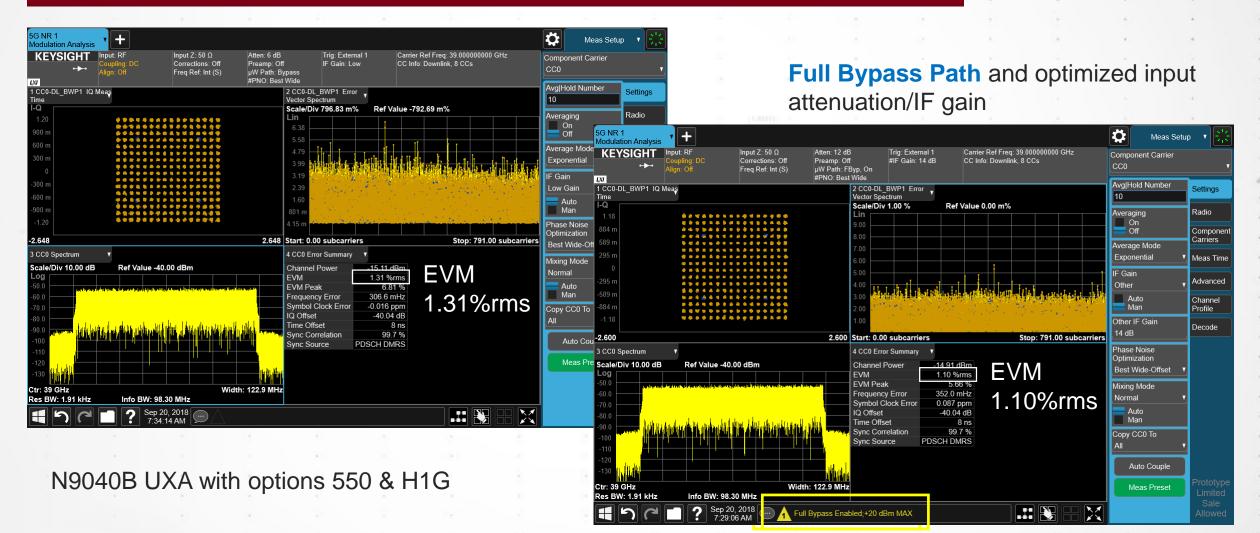


© Keysight Technologies 2018 18


UXA FRONT END - SIMPLIFIED VIEW

- Normally, wide BW measurements are noise limited, hence, bypassing both pre-selector & path for electronic attenuator/preamp (Low Noise Path) can improve EVM.
- Normally analyzer selects IF gain depending on other analyzer settings, including the selected RF attenuation. For a
 given signal BW and crest factor, manually setting both the RF attenuator and IF gain can improve EVM.

Optimize attenuator & IF gain together



5G NR 28 GHZ 100 MHZ 256QAM OPTIMIZED EVM RESULT

KEYSIGHT

5G NR 39 GHZ 100 MHZ 256QAM OPTIMIZED EVM RESULT

KEYSIGHT TECHNOLOGIES

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

ACLR Optimization

UXA KEY STEPS

- Do not use Full Bypass Path mode the microwave preselector filter is needed for best ACLR performance.
- Above 3.6 GHz enable Low Noise Path (LNP). This bypasses lossy switches.

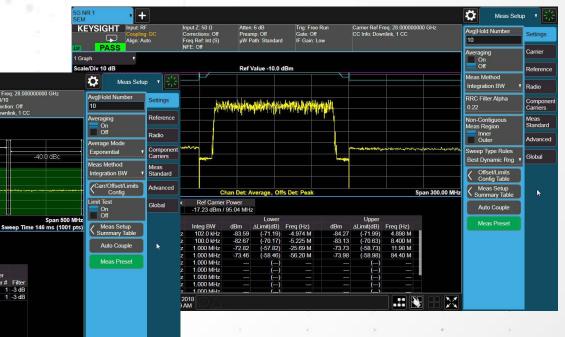
Freq Ref: Int

-39 2 dE

Ref Value -20.00 dBr

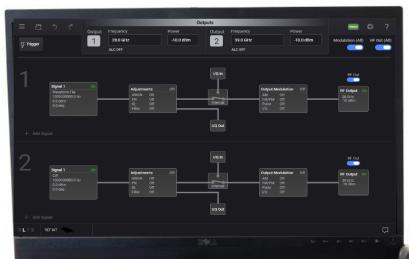
KEVSIGHT

ale/Div 10.0 dB


es BW 100 kHz

-39.5 dB

-17 26 dBm/95 04 MH


- Optimize attenuator for best performance
- Turn on Noise Corrections

SG Boot Camp: **7 Key Measurement Challenges and Case Studies**

5G Hardware Configurations: FR1 and FR2

NON-SIGNALING: UP TO 1 GHZ BW SIGNAL GENERATION & ANALYSIS

M9383A

KEYSIGHT


PXI Source

M9383A PXI Microwave vector source, up to 44GHz ~1% EVM at 28 GHz w/1 GHz BW

Fully calibrated from factory across all BW's General purpose instruments (not banded)

Benchtop Analyzer

N9040/41B UXA analyzer, up to 50 / 90 / 110 GHz ~1% EVM at 28 GHz w/1 GHz BW (option H1G)

Hardware Configurations: 50-110 GHz, up to 10 GHz wide

NON-SIGNALING: > 1 GHZ BW SIGNAL GENERATION & ANALYSIS

Widest BW Source Config

- M8195 AWG, direct to Low IF
- M9383A or N5183B analog LO
- VDI upconverter

Widest BW Analyzer N9041B UXA with external WB IF

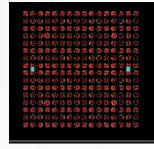
Extremely low noise & spurs Excellent for both modulated and SEM testing

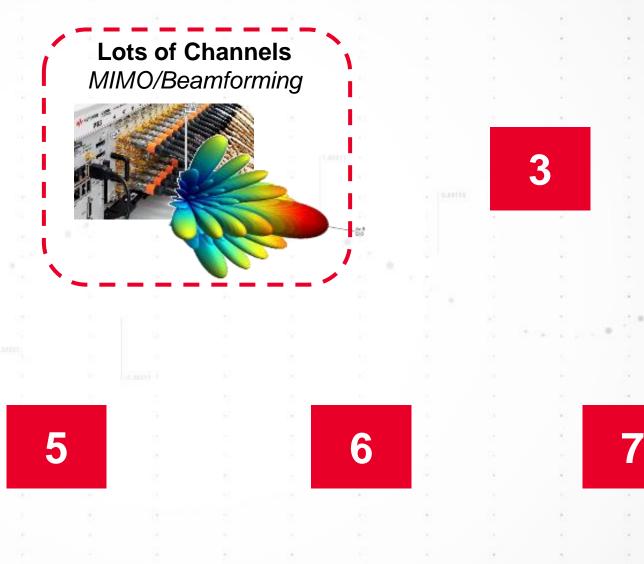
External Digitizer

8, 33, 65 GHz oscilloscope, UXR oscilloscopes (13 to 110 GHz), or M9703/10 AXIe digitizer

Precede the 5G Race with New Radio

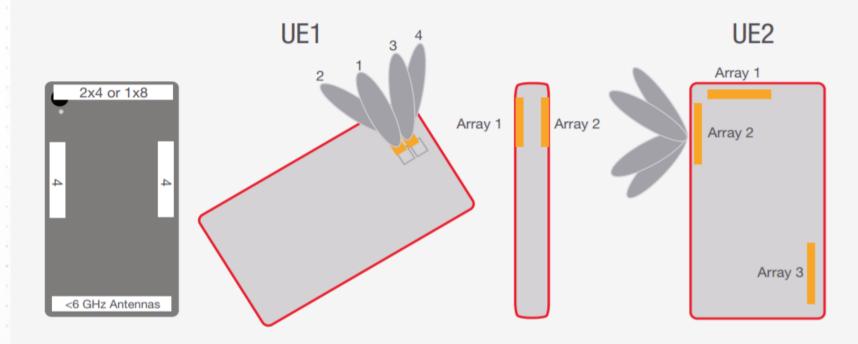
KEYSIGHT 5G NR SOFTWARE SOLUTIONS

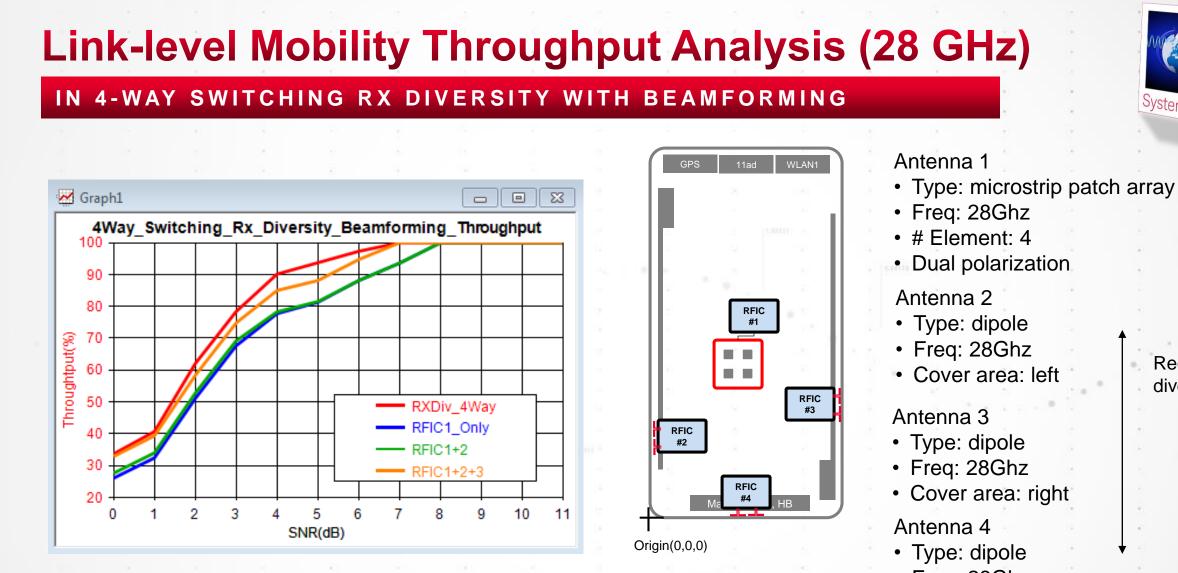

	Software:	SystemVue	Signal Studio	89600 VSA	X-Series Apps
	Category:	ESL Design & Simulation software	Signal Creation software	Vector Signal Analysis software	Measurement Application software
	Custom OFDM: for 5G proto-typing	W1461B	N7608APPC	89601B-BHF	N9054EM1E
	Pre-5G: for Verizon	W1906E	N7630APPC	89601B-BHN	
	3GPP 5G NR:	W1906E	N7631APPC (N7631C)	89601B-BHN	N9085EM0E
	Target Customers:	Simulation users who needs the world-best 5G NR PHY simulation	R&D who needs test vector waveforms on receiver or component tests	R&D who wants to get in- depth modulation analysis for transmitter tests	R&D plus early MFG for simple pass/fail tests


5G Boot Camp: 7 Key Measurement Challenges and Case Studies

7 Key Measurement Challenges

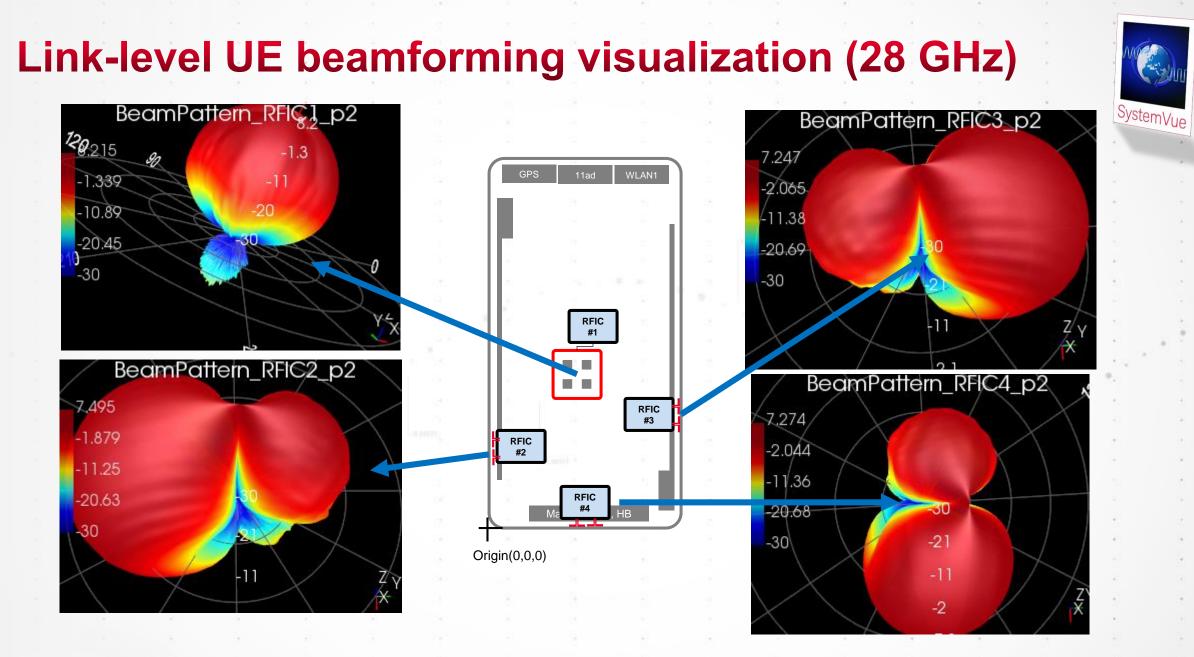
Signal Quality mmW, Waveform, Fidelity



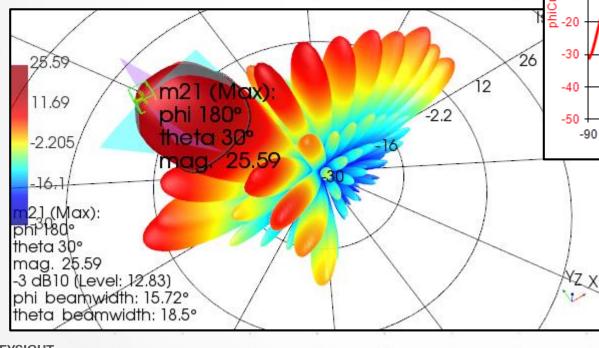

Challenge: Multiple Antennas

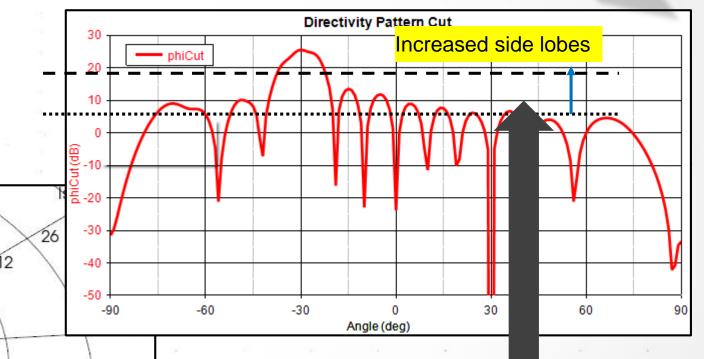
Challenge: Understanding MIMO and Beamforming real-world performance including handover and throughput

- Characterize beam patterns have proper phase and magnitude relationship and beams and nulls are in the correct position
- Emulate real-world conditions in sub 6 GHz or mmWave



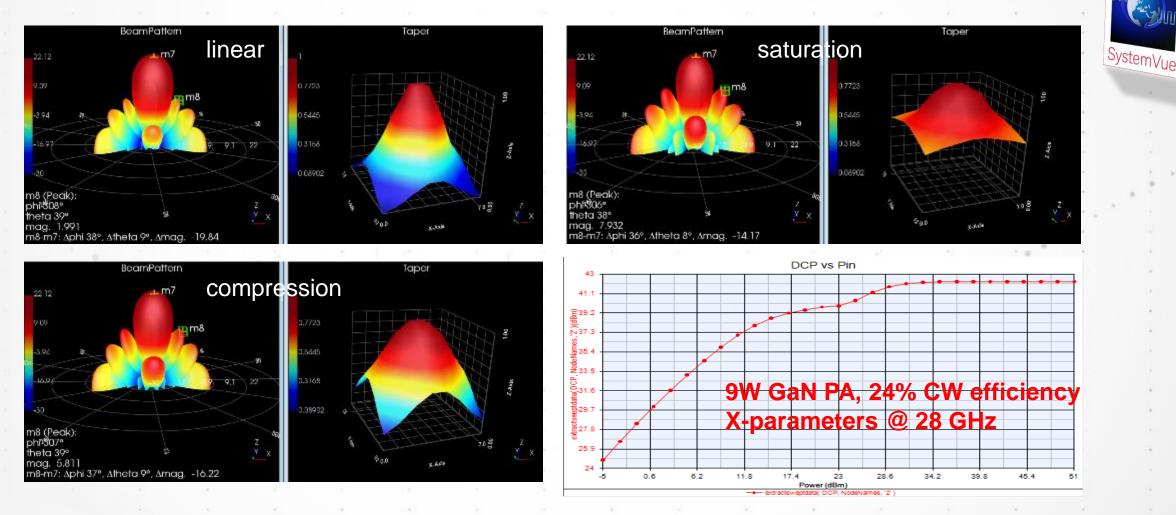
Throughput: MCS3, Channel model: TR 38.901


• Freq: 28Ghz Cover area: bottom SystemVue


Receive diversity

Sidelobe Energy with Nonlinear Array PA's

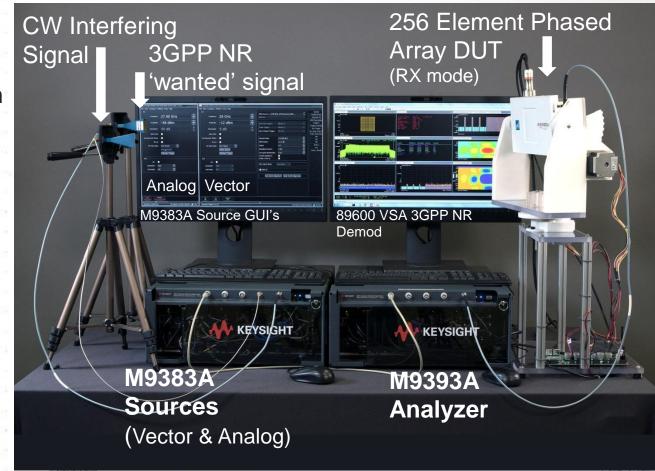
- To what extent will OTA spatial/sidelobe masks be in the final Conformance docs?
- Even if not, should you still characterize them?


Sidelobes increase +15dBc when Nonlinear instead of Linear. *Is that ok?*

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Small vs. Large-signal Sidelobes – GaN PA array @ 28 GHz

8X8 ARRAY, X-PARAMETER DEVICE


Case Study: Verify Performance on Antenna

Challenge: Base station vendor wanted < 1 % EVM on a Wideband Signal

- Is the waveform created with 5G compliant waveform with numerology, UL, DL scheduling?
- Can the equipment produce clean mmWave signals?
- Performance mmWave measurements?

Solution: Flexible Testbed

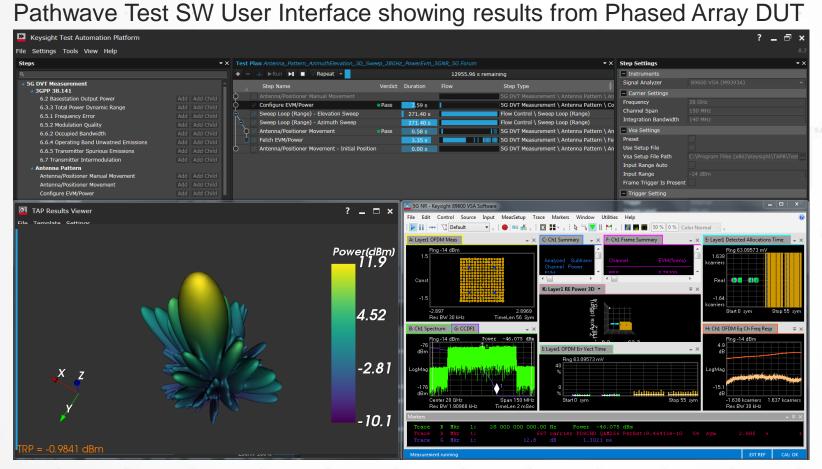
- 5G NR compliant waveform generation; N7631C & M9383A
- Best-in-class EVM performance; N9040B or M9393A with 89601B (VSA)
- Flexible configurations can scale as the standards evolve

https://www.youtube.com/watch?v=FQBIxIw-nok

Verify Performance on Antenna

3GPP 5G NR MEASUREMENT DETAIL WITH VSA

5G NR Downlink 100 MHz BW @ 28 GHz 256 QAM payload



5G Conformance Test SW

KEYSIGH1

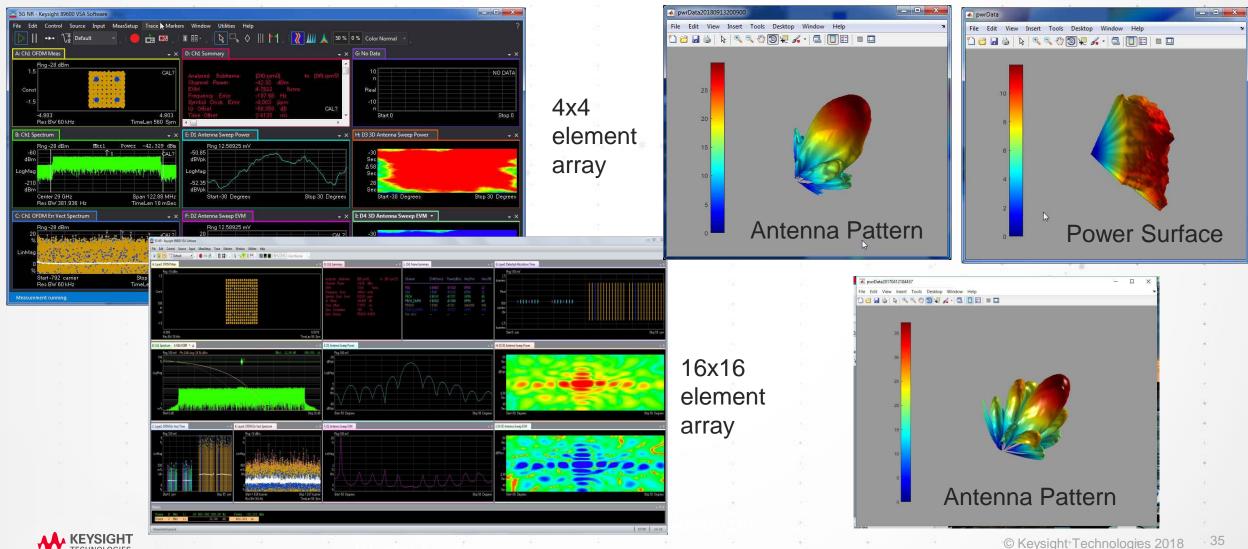
ECHNOLOGIES

TEST AUTOMATION WITH PATHWAVE TEST

Conformance Test Measurements can be sequenced over frequency/amplitude etc to build specific test plans for a given base station class and configuration

 Create & Playback 5G test waveform

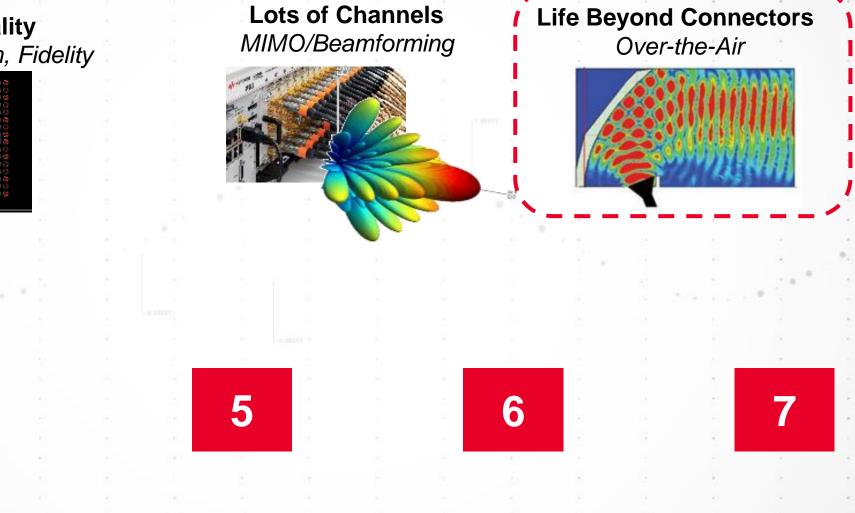
- AUT control
 - Mode; Tx or Rx
 - Beam Steering or Boresight
- Positioning


- Azimuth
 - Elevation
- Measurements;
 - Power / EVM
 - Antenna beam pattern (at boresight)
 - Antenna beam power surface over azimuth and elevation
 - etc

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

Verify Performance on Antenna

3GPP 5G NR MEASUREMENT DETAIL (EXAMPLES)


5G NR Downlink 100 MHz BW @ 28 GHz 64/256 QAM payload

5G Bood Camp: 7 Key Measurement Challenges and Case Studies

7 Key Measurement Challenges

Signal Quality mmW, Waveform, Fidelity

KEYSIGHT TECHNOLOGIES

3GPP UE & gNB Tx Conformance Test requirement docs

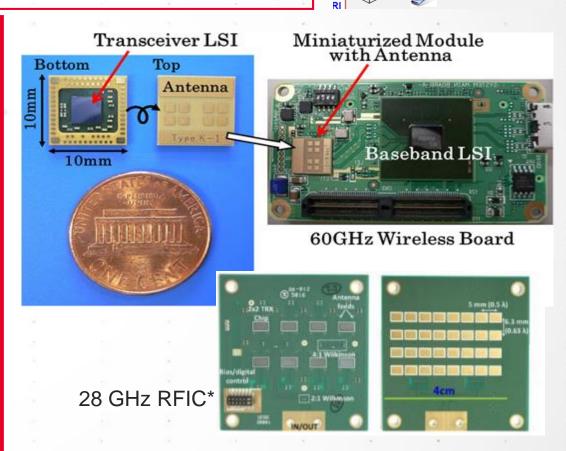
3GPP NR UE Tx test requirement	Minimum Requirement (2018-06)	Conformance Requirement (2018-09 draft)*	UE
Part 1: Range 1 Standalone	TS38.101-1 v.15.2.0	TS38.521-1 v.1.0.1	FR1, Conducted
Part 2: Range 2 Standalone	TS38.101-2 v.15.2.0	TS38.521-2 v.1.0.0	FR2, Radiated
Part 3: Range 1 and 2 Interworking operation with other radios	TS38.101-3 v.15.2.0	TS38.521-3 v.1.0.0	FR1 and FR2 CA. FN-DC** FR1 Conducted, FR2 Radiated

(*) v.1.0.x is still draft or pre-release status. (Official version should be v.15.x.x) (**) EN-DC: E-UTRA and NR Dual Connectivity

3GPP NR BTS Tx test requirement	Minimum Requirement (2018-06)	Conformance Requirement (2018-09 draft)*	GNB
Part 1: Conducted testing	T020 404 × 45 2.0	TS38.141-1 v.1.0.0	FR1, Conducted
Part 2: Radiated testing	1330.104 V.15.2.0	TS38.104 v.15.2.0 TS38.141-1 v.1.0.0 FR1, Conducter TS38.141-2 v.1.0.0 FR1 and FR2,	FR1 and FR2, Radiated

(*) v.1.0.x is still draft or pre-release status. (Official version should be v.15.x.x)

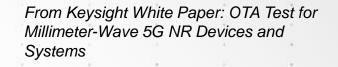
Life Beyond Connectors


Free-space Path Loss

Active Antenna System (AAS) **RF/Antennas**

The Good News:

- Higher frequency antenna elements are smaller
- Easier to assemble into electronically steered arrays
- Reduced interference. Energy goes where it's needed
- Improve performance in dense crowds (5G goal)
- Higher frequencies → wider bandwidths: faster (5G goal)
 Challenges:
 - Antenna are directional
 - Increased complexity with more elements, very small for probing or conducted test
 - Multiple antenna arrays required for spherical coverage
 - Traditional cabled test methods obsolete OTA needed



* Image courtesy of Professor G. Rebeiz of U of Ca, SD

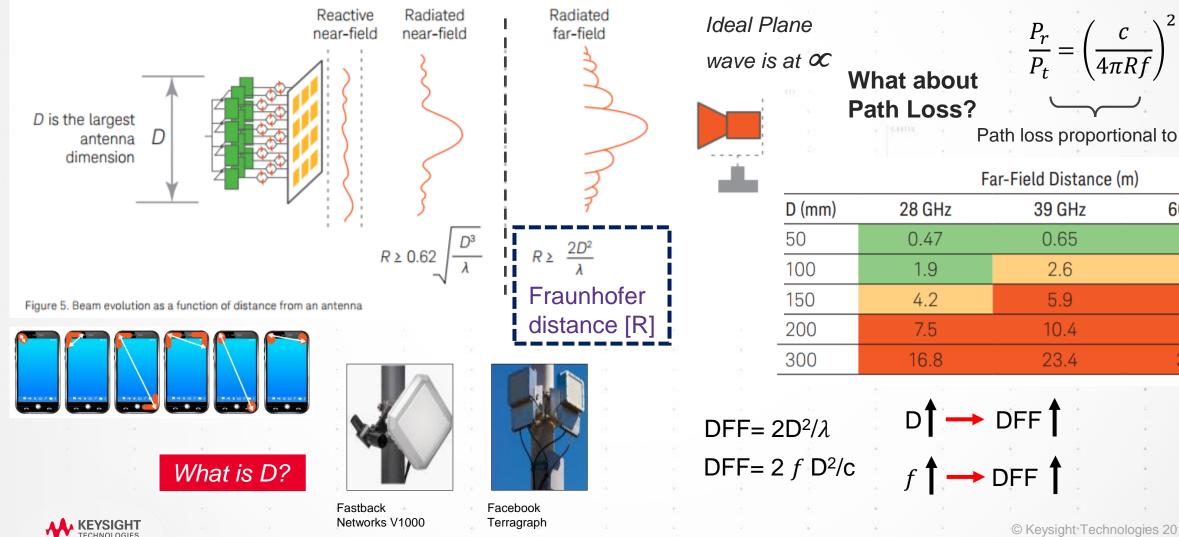
Far-Field Test Challenges with mmWaves

LONGER FAR-FIELD AND HIGHER PATH LOSS

Friis Transmission Equation

 $G_t G_r$

60 GHz

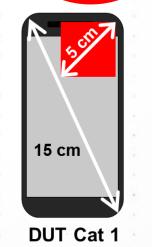

4

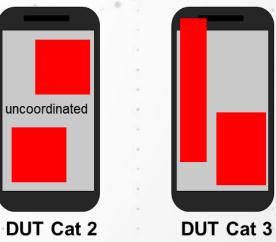
9

16

36.0

 R^2


FR2 Measurement Challenges


HOW FAR IS THE FAR FIELD?

D (cm)	Freq. (GHz)	Far field (m)	Path Loss (dB)	Freq. (GHz)	Far field (m)	Path Loss (dB)	Freq. (GHz)		Path Loss (dB)
5	2	0.03	8.93	28	0.47	54.77	43	0.72	62.23
10	2	0.13	20.97	28	1.87	00.01	43	2.87	14.21
15	2	0.30	28.01	28	4.20	73.86	43	6.45	81.31
20	2	0.53	33.01	28	7.47	78.86	43	11.47	86.31
30	2	1.20	40.05	28	16.80	85.90	43	25.80	93.35
1					73 / K		2 G	- 1 - j.	

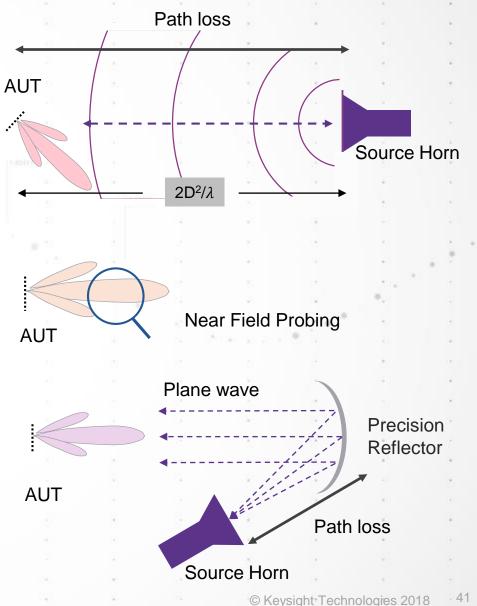
TR 38.810 Table 5.3-1: DUT Categories

DUT category	Description
Category 1	Maximum one antenna panel with D \leq 5 cm illuminated by test signal at any one time
Category 2	More than one antenna panel D \leq 5 cm without phase coherency between panels illuminated at any one time
Category 3	Any phase coherent antenna panel of any size (e.g. sparse array)

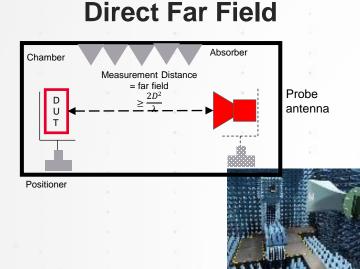
Three Common OTA Methods

SUITABILITY FOR MMW TEST

Direct Far Field simulates behavior of real-world operation—in which DUT receives just a plane-wave. Rayleigh ranged defined as $2D^2/\lambda$.

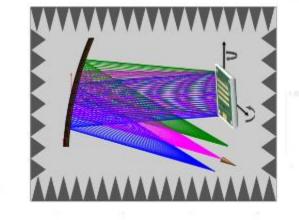

• Key questions: *what is D? How large is the required chamber?* Path loss.

Near-field test systems scan signals in the radiating near-field region and employ mathematical transforms to recover the far-field antenna pattern


 Key issues: Device RX, RF parametric, and signaling tests challenging with today's technology.

Compact Test Range (CATR) or Indirect FF (IFF) uses reflectors to focus the RF energy into a plane wave—enables far-field measurements within a much shorter distance than would normally be required.

- Key issue: precision reflector design and fabrication required
- Key benefit: True far-field in compact footprint

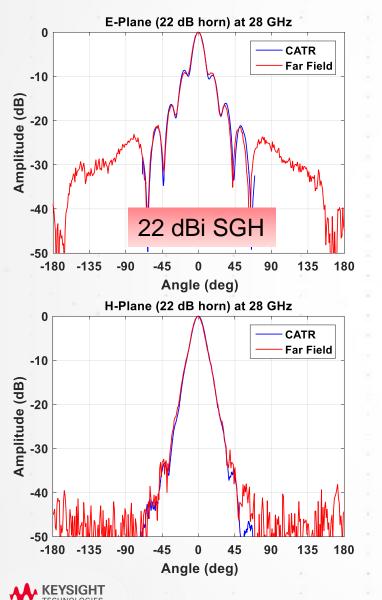


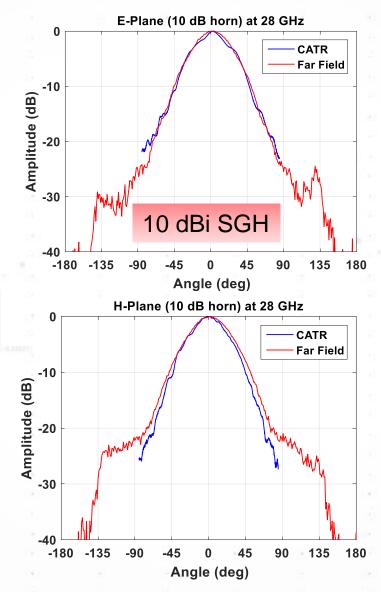
Common OTA Test Methods

- ✓ Simple design, mature
- Measurement flexibility;
 - ✓ Antenna beam pattern characterization
 - Beamforming/beamsteering validation
- RF parametric tests (if S/N high enough)
 How devices operate
- × Subject to higher path loss
- Can get very large for smaller devices at mmWave frequencies
- × Can be slow (mechanical motion), expensive

- ✓ Measurement flexibility
 - Antenna beam pattern characterization
 - Beamforming/beamsteering validation
 - ✓ RF parametric tests
 - End-to-End performance (signaling)
- ✓ Small footprint, even for larger devices
- ✓ Lower path loss, better accuracy
- × Slow (limited by mechanical motion)× Expensive (slightly more than DFF)

Near-Field Scanning

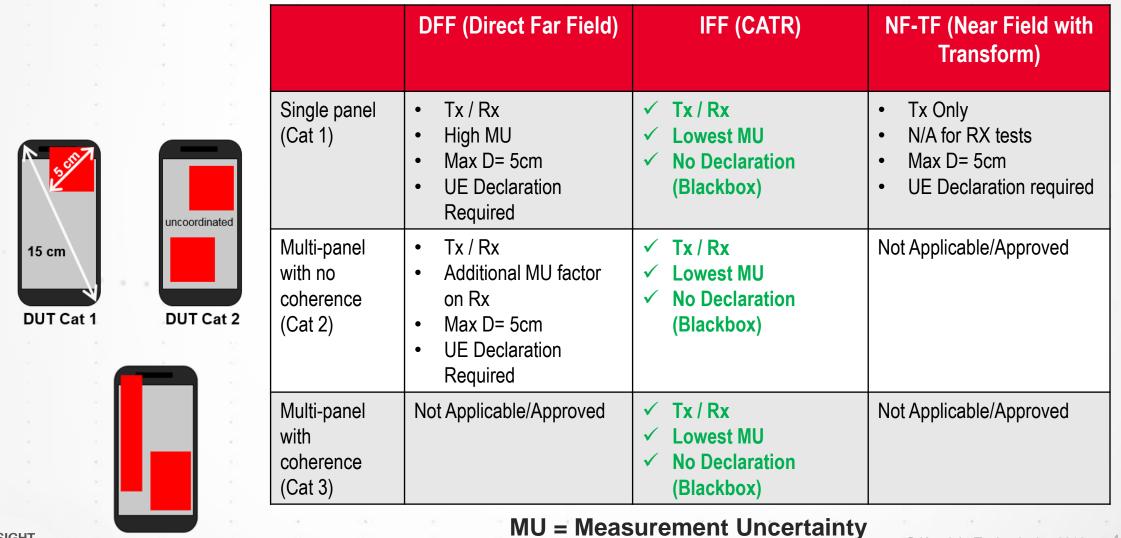

Image courtesy of NSI-MI


Small, lower cost (at mmWave?)

- ✓ Passive antenna;
 - ✓ Antenna beam pattern characterization
 - Beamforming/beamsteering validation
 - ✓ RF parametric tests (with phase recovery)
- Requires highly accurate positioners for mmWave
- × Applicability to modulated signals
- × Tx tests for active devices
- × Rx tests
- × Can be slow

Keysight CATR vs. Far Field Range*

* http://allwavecorp.com/AntennaMeasurements.php

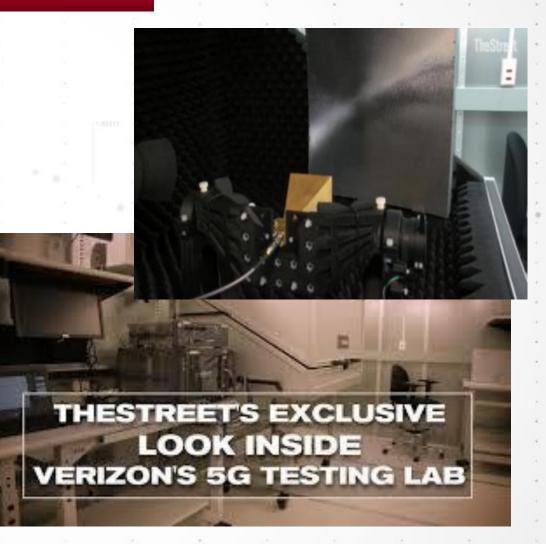

- Comparisons shown for high and low gain horn antennas
- Comparisons show high degree of correlation between the different types of chambers

- 22 dB horn : Sage SAR-2013-34-S2
- 10 dB horn : Pasternack PE9851-10

GREAT CORRELATION !

Measurement Systems for NR UE RF Test

3GPP TR 38.810 STUDY ON TEST METHODS (OTA)


DUT Cat 3

Newly Approved Indirect Far Field OTA for UE Test

BASED ON CATR / IFF

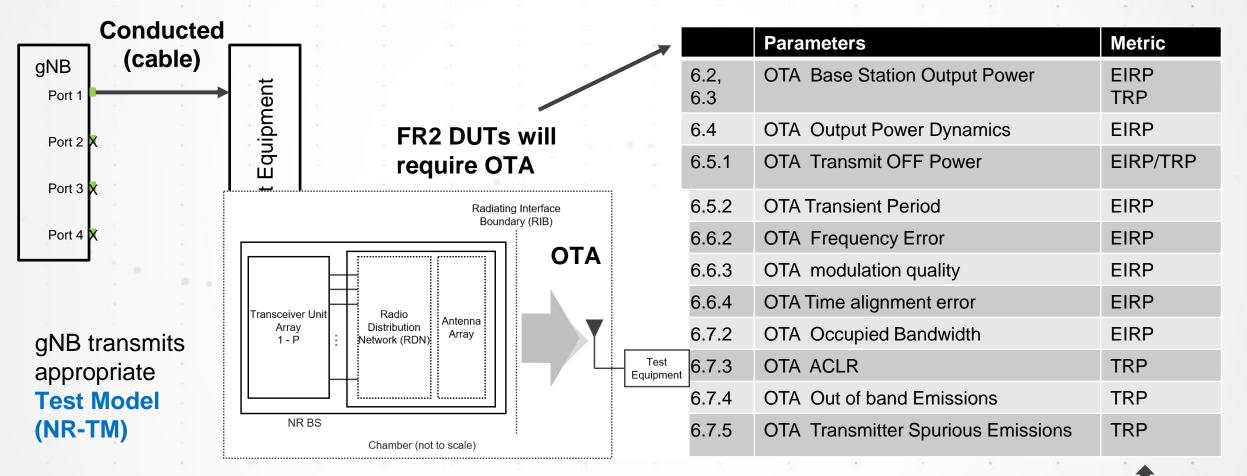
- The IFF test method based on compact antenna test range (CATR) uses a parabolic reflector to collimate the signals transmitted by the probe antenna.
- Creates a far-field test environment in a much shorter distance and with less path loss than the DFF method.
- Verizon over-the-air (OTA) testing solution using Compact Antenna Test Range Chamber (CATR)

https://www.youtube.com/watch?v=IJOVIHHB9bw

3GPP gNB Conformance Tests (TS 38.141-1,2)

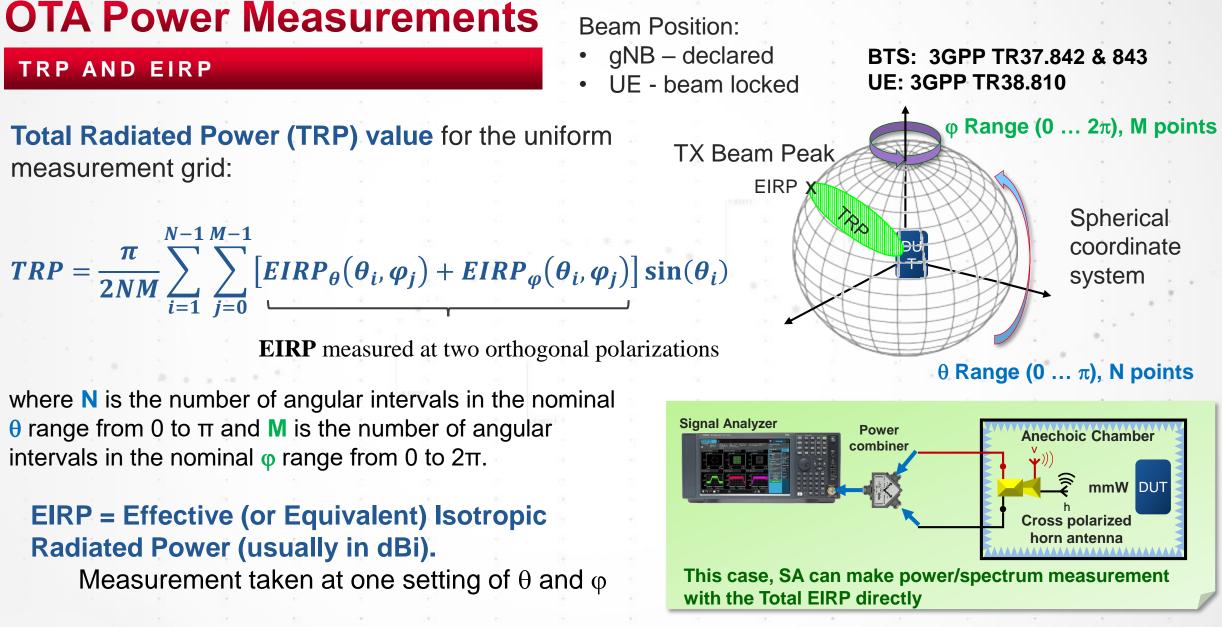
CHAPTER 6,7,8 MEASUREMENT DETAILS

	3GPP NR gNB Conformance (Conducted & Radia	-
Chap 6, Tx Characteristics	Chap 7, Rx Characteristics Tests	Chap 8, Rx Performance Requirements Tests
Output Power	Reference sensitivity level	Performance requirements or PUSCH Multipath fading propagation of notions
• Output Power Dynamics (RE Power Control DR / Total Power DR /)	Dynamic range	 UL timing adjustment HARQ-ACK multiplex 1 0 PUSCH
Transmit On/Off Power	 Adjacent Channel Selectivity (ACS) 	High speed train on lith as
(TX Off Power / TX Transient Period)	 Blocking characteristics 	Performance (equinements for PacCH Actions and the state of t
 Signal Quality (Freq Error / EVM / Time Alignment Error /) 	Intermodulation characteristics	 CQL is ed detection for PUt CH format 2 ACK missed detection or maliti user PUTCH format 1a
Unwanted Emissions	In-channel selectivity	Performance Requirements for PLATH
(Occupied BW / ALCR / Spurious /)	Spurious emissions	
Transmitter Intermodulation		
ummary	Summary	Summary
• Requires time aligned digitizers	Tests are performed open loop	• 3 tests performed class loop (implies real-time sig gen)
Or digitizers with wide BW	 Tests require interfering signals 	 Tests require failing of 'wanted' & 'interfering' signals
	 Performance metric = BLER (calculated by eNB) 	 Performance memc = throughput (calculated by eNB)
KEYSIGHT		© Kovcight Technologies 2018 46



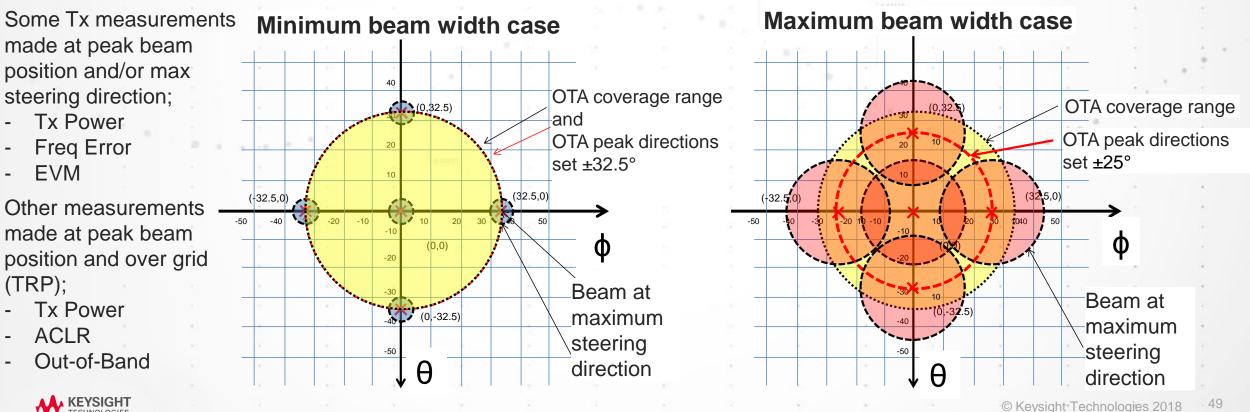
Su

3GPP gNB Transmitter Tests (Chap 6)


3GPP TS 38.141-1 (Conducted) 3GPP TS 38.141-2 (Radiated)

BASIC CONFIG FOR MOST TESTS

gNB tests will likely follow the eNB very closely with changes added for FR2 OTA testing


OTA Measurement – gNB Spatial Requirements

OTA AAS BS DECLARATION

Example from 3GPP TR 37.843

Example declarations of an OTA Active Antenna System (AAS) BS with multiple beam widths and beam steering capability;

- For the minimum beam width case: beam width (θ and ϕ) =10°, maximum steering (θ and ϕ) = ±32.5°
- For the maximum beam width case: beam width (θ and ϕ) =35°, maximum steering (θ and ϕ) = ±25°

TS38.141-1 V1.0.0 SEC. 4.9.2 AND TS38.141-2 V.1.0.0 SEC. 4.9.3

- Duration: 1 radio frame (10 ms) for FDD, 2 radio frames (20 ms) for TDD
- Normal CP
- Virtual RB: Localized type

Test Model	TS38.141-1		TS38.141	-2
NR-TM1.1	4.9.2.2.1	BS Output power, OBW, ACLR, OBUE, Spur, Intermod	4.9.3.2.1	BS output power, OBW, ACLR, OBUE, Spur
NR-TM1.2	4.9.2.2.2	ACLR. OBUE		
NR-TM2	4.9.2.2.3	Total power dynamic range (min pwr), 64QAM EVM, Freq error (min pwr)	4.9.3.2.2	Total power dynamic range (min pwr), 64QAM EVM, Freq error (min pwr)
NR-TM2a	4.9.2.2.4	Total power dynamic range, 256QAM EVM, Freq error		
NR-TM3.1	4.9.2.2.5	Total power dynamic range (max pwr), 64QAM EVM, Freq error (max pwr)	4.9.3.2.3	Total power dynamic range (max pwr), 64QAM EVM, Freq error (max pwr)
NR-TM3.1a	4.9.2.2.6	Total power dynamic range (max pwr), 256QAM EVM, Freg error (max pwr)		
NR-TM3.2	4.9.2.2.7	Freq error, 16QAM EVM		
NR-TM3.3	4.9.2.2.8	Freq error, QPSK EVM		

PHY channel

have not been

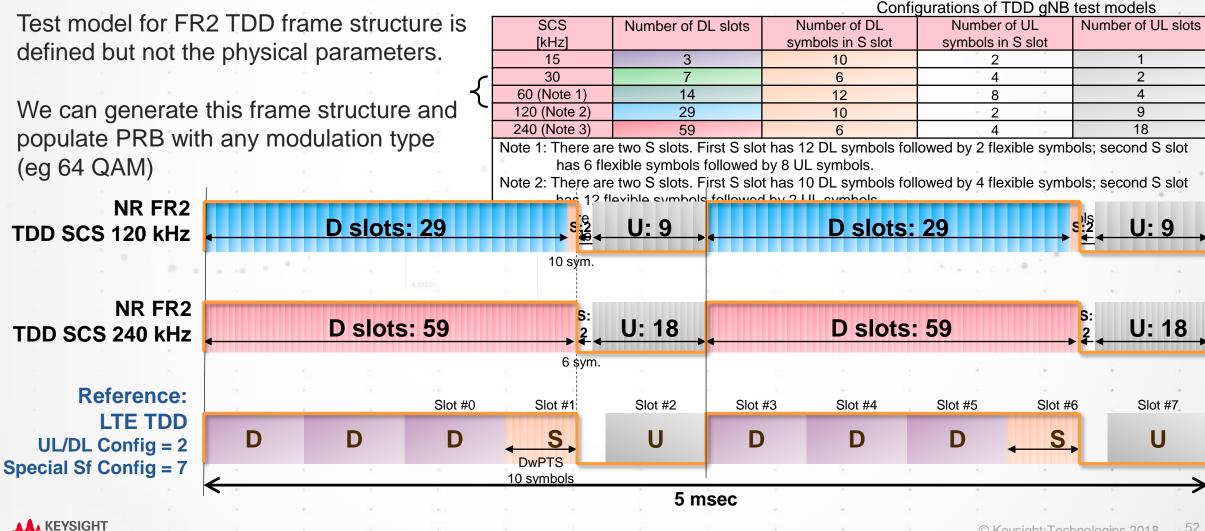
parameters

defined yet.

Editor's note: Physical channel parameters for TM2

to be added.

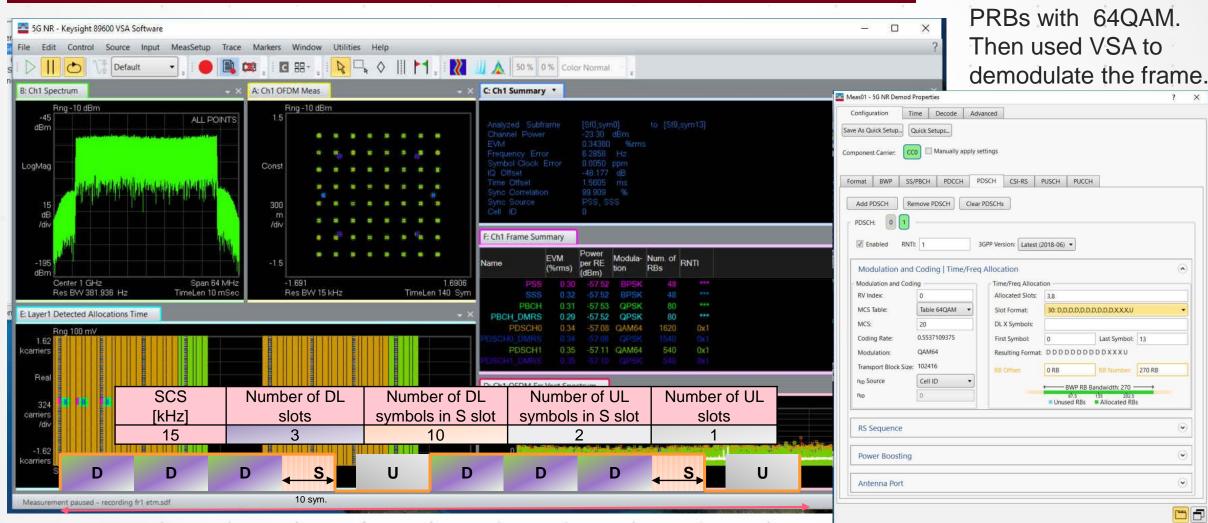
TS38.141-1 SECTION 4.9.2 NR TEST MODELS FOR FR1 TDD


Table 4.9.2.2-1

Configurations of TDD gNB test models for NR FR1

Test model for FR1 TDD frame structure is SCS Number of DL slots Number of DL Number of UL Number of UL slots [kHz] symbols in S slot defined but not the physical parameters. symbols in S slot 15 3 10 30 7 6 4 12 60 (Note) 14 We can generate this frame structure and Note: There are two S slots. First S slot has 12 DL symbols followed by 2 flexible symbols; second S slot populate PRB with any modulation type has 6 flexible symbols followed by 8 UL symbols. (eq 64 QAM)NR FR1 S. S U U D D D D D **TDD SCS 15 kHz** 10 sym. NR FR1 D U U D D U U Π Π D D Π Π **TDD SCS 30 kHz** 6 sym. NR FR1 DDDDDDDDDDDDD__\$ UUUUDDDDDDDDDDDDDD__\$ UUUU **TDD SCS 60 kHz** 12 sym. **Reference:** Slot #0 Slot #' Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 Slot #7 LTE TDD D U D D S U D D D UL/DL Config = 2 DwPTS Special Sf Config = 7 5 msec **KEYSIGH** 51 © Keysight Technologies 2018 5G Boot Camp: 7 Key Measurement Challenges and Case Studies

TS38.141-2 SECTION 4.9.3.2 NR TEST MODELS FOR FR2 TDD


Table 6.1.2-1:

5G Boot Camp: 7 Key Measurement Challenges and Case Studies

© Keysight Technologies 2018 52

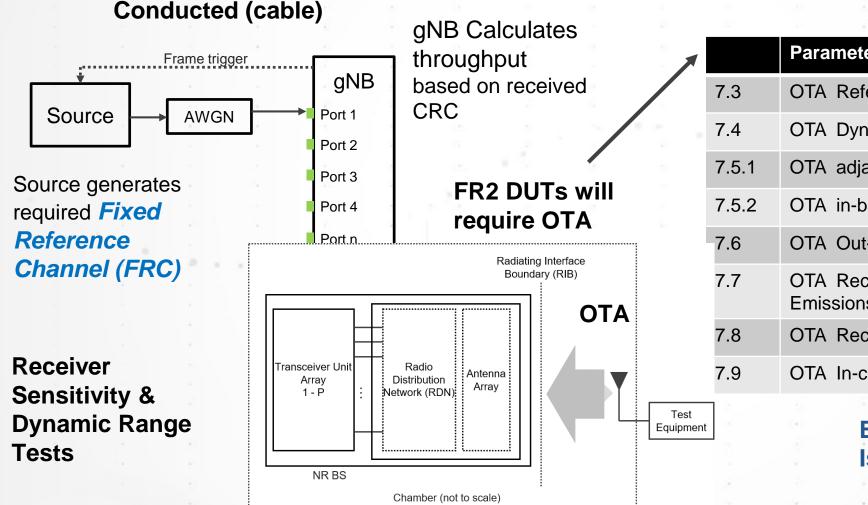
VSA DEMOD OF NR TEST MODEL FOR FR1 50 MHZ TDD 64QAM

1 Frame = 10 ms = 10 slots

KEYSIGH1

Used signal studio for

5G NR to generate a

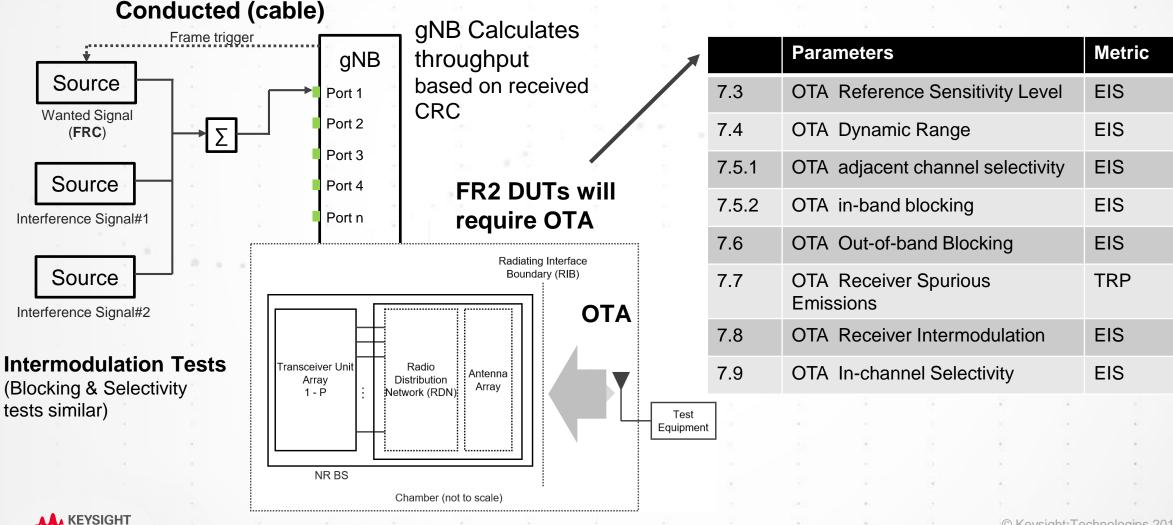

FR1 TDD NR-TM

frame and filled all

3GPP gNB Receiver Characteristics (Chap 7)

BASIC TEST CONFIG

3GPP TS 38.141-1 (Conducted) 3GPP TS 38.141-2 (Radiated)


	Parameters	Metric
7.3	OTA Reference Sensitivity Level	EIS
7.4	OTA Dynamic Range	EIS
7.5.1	OTA adjacent channel selectivity	EIS
7.5.2	OTA in-band blocking	EIS
7.6	OTA Out-of-band Blocking	EIS
7.7	OTA Receiver Spurious Emissions	TRP
7.8	OTA Receiver Intermodulation	EIS
7.9	OTA In-channel Selectivity	EIS

EIS = Effective (or Equivalent) Isotropic Sensitivity

3GPP gNB Receiver Characteristics (Chap 7)

ADDITIONAL TEST CONFIGS

3GPP TS 38.141-1 (Conducted) 3GPP TS 38.141-2 (Radiated)

OTA Sensitivity Measurements

TIS AND EIS

Effective Isotropic Sensitivity (EIS) is the measured sensitivity in a single direction (fixed θ and φ). Usually expressed in dBm.

Total Isotropic Sensitivity (TIS) value for the uniform measurement grid:

 φ Range (0 ... 2π), M points

Fixed Reference Channels (FRC) for gNB Rx Testing

DEFINED IN ANNEX A.X IN TS 38.141-1 & 38.141-2

Annex A (normative): Reference measurement channels

Fixed Reference Channels for receiv A.1 and in-channel selectivity (QPSK, R

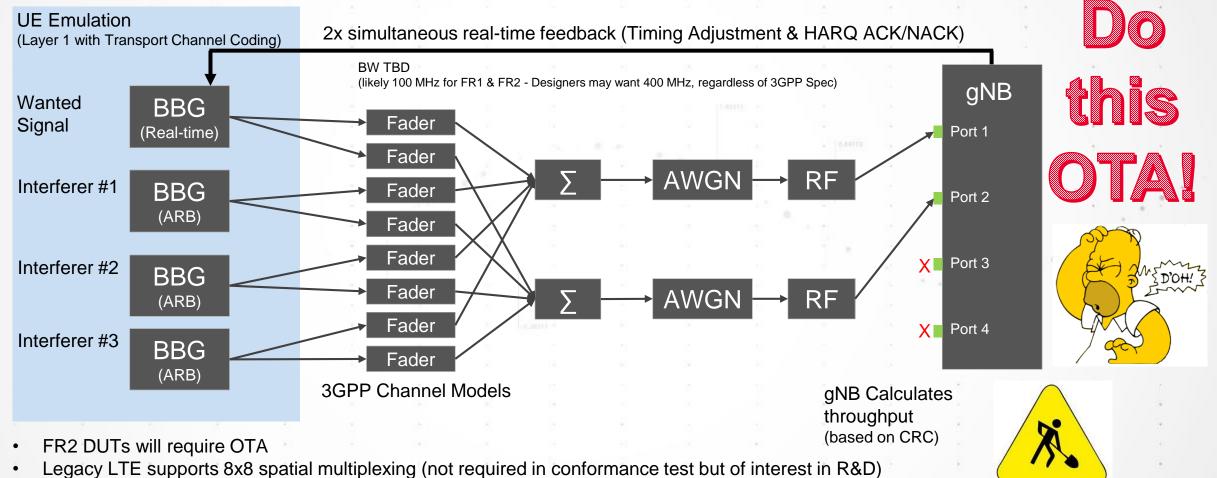
The parameters for the reference measurement channels are specified in table A.1-1 f channel selectivity.

The parameters for the reference measurement channels are specified in table A.1-2 for channel selectivity.

Reference channel	G-FR1- A1-1	G-FR1- A1-2	G-FR1- A1-3	G-FR1- A1-4	G-FR1- A1-5	G-FF A1-
Subcarrier spacing[kHz]	15	30	60	15	30	60
Allocated resource blocks	25	11	11	106	51	24
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPS
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	2152	984	984	9224	4352	208
Transport block CRC (bits)	16	16	16	24	24	16
Code block CRC size (bits)	-	<u>i</u>	100 A	24	99 1	
Number of code blocks - C	1	1	1	2	1	1
Coded block size	2168	1000	1000	4648	4376	210

Table A.1-1: FRC parameters for FR1 receiver sensitivity and ir

Signal Studio Pro for 5G NR N7631C


🗃 🖬 🛃 1	TRO	Quick Setup		1
Hardware	Save to 89600 Setup File	FRC Quick Setup • ElFull-filled Config •	🔽 Hint	
Instrument	1. General Settings	FR1 Receiver sensitivity and in-channel selectivity	G-FR1-A1-1 : SCS15k_25RB_0	PSK R=1/3
Waveform Setup	Enabled	FR1 Dynamic range	G-FR1-A1-2 SCS30k 11RB 0	
Carrier 1 (DL)	Frequency Offset	FR2 Receiver sensitivity and in-channel selectivity		-
- BWP Setup	Timing Offset	Uns		Station of the local division of the local d
- Channel Setup	Power Boosting	0.00 dB	G-FR1-A1-4 : SCS15k_106RB_	
	Initial Phase	0 *	th G-FR1-A1-5 SCS30k_51RB_C	
	2. Spectrum Control		5. G-FR1-A1-6 : SCS60k_24RB_0	PSK_R=1/3
	DC Punctured	Off	D G-FR1-A1-7 SCS15k_15RB_C	PSK_R=1/3
	Window Beta	0.01	N G-FR1-A1-8 SCS30k 6RB Q	PSK R=1/3
	Windowing Method	Centered at Symbol Boundary	B G-FR1-A1-9 SCS60k_6RB_Q	PSK R=1/3
	Baseband Filter	On	the maxino (ior	
	3. Cell-Specific Settings		- single numerology	
	Carrier Type	Downlink	mode) or	
	Cell ID	0	N_grid_size(for	
	Numerology Mode	Single Numerology	multiple	
	Bendwidth	FR1 100MHz	numerologies mode)	
	Numerology	u = 1:30 kHz	Lic automatically	
	Channel Allocation			
	CRB for u=1			
	273			
			SS/PBCH	
	137		DL-SCH	
			O u=1 axis	
	0 ₀ 2 4			
	0 2 4	6 8 10 12 14 16	18 20 Slot	

KEYSIGH1

+

3GPP gNB Receiver Performance Requirements (Chap 8)

EXAMPLE 4X2 TEST CASE

• Depending on gNB capability, some tests require: 1x2, 4x2, 2x2, 3x2, 3x4, 3x8

WORK IN PROGRESS

3GPP UE Conformance Test Requirements: Radiated

TS38.521-2 V.1.0.0 (V.2018-09) - DRAFT

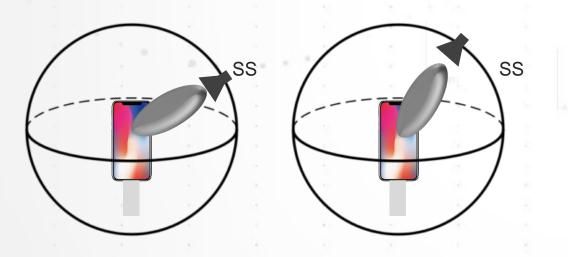
TS38.521-2Transmitter TestMeasurementOTA6.2.1UE maximum output powerChan PowerEIRP, TR6.2.2UE maximum output power reduction (MPR)Chan Power <ffs>6.2.3UE maximum output power with additional requirementsChan Power<ffs>6.2.4Configured transmitted powerChan PowerEIRP, TR6.3.1Minimum output powerChan PowerEIRP, TR</ffs></ffs>	RP
6.2.2UE maximum output power reduction (MPR)Chan Power <ffs>6.2.3UE maximum output power with additional requirementsChan Power<ffs>6.2.4Configured transmitted powerChan PowerEIRP, TR6.3.1Minimum output powerChan PowerEIRP</ffs></ffs>	RP
reduction (MPR)Chan Power6.2.3UE maximum output power with additional requirementsChan Power6.2.4Configured transmitted powerChan PowerEIRP, TR6.3.1Minimum output powerChan PowerEIRP	
additional requirementsEIRP, TR6.2.4Configured transmitted powerChan PowerEIRP, TR6.3.1Minimum output powerChan PowerEIRP	
6.3.1Minimum output powerChan PowerEIRP	
	RP
6.3.2 Transmit OFF power Tx On/Off Power TRP	
6.3.3 Transmit ON/OFF time mask Tx On/Off Power EIRP	
6.3.4 Power control EIRP?	
6.4.1 Frequency error Mod Analysis q- & j- ea	ach
6.4.2.1 Error Vector Magnitude Mod Analysis q- & j- ea	ach
6.4.2.2 Carrier leakage Mod Analysis EIRP?	
6.4.2.3 In-band emissions (IBE) Mod Analysis <ffs></ffs>	
6.4.2.4,EVM equalizer spectrumMod Analysis <ffs>6.4.2.5flatness, EVM spectrum flatness for pi/2 BPSK with spectrum shapingMod Analysis<ffs></ffs></ffs>	
6.5.1 Occupied bandwidth OBW EIRP	
6.5.2.1,Spectrum emission maskSEMTRP6.5.2.2Additional Spectrum emission maskMarkMarkMark	
6.5.2.3 Adjacent channel leakage ratio ACP TRP	
6.5.3 Spurious emissions Spur Emissions TRP	

3GPP TS 38.521-2 (Radiated) – UE FR2

TS38.521-2	Receiver Test	Metrics	Assumed Link Direction
7.3	Reference sensitivity level	EIS CDF	Each beam peak search grid
7.4	Maximum input level	Beam peak	RX beam peak direction
7.5	Adjacent Channel Selectivity (ACS)	Beam peak	RX beam peak direction
7.6.2	In-band blocking	Beam peak	RX beam peak direction
7.6.3, 7.7	Out-of-band blocking and Spurious response	FFS	FSS
7.9	Receiver Spurious emissions	FFS	TX beam peak direction
7.10	Receiver image	FFS	FFS

FFS – For Further Study

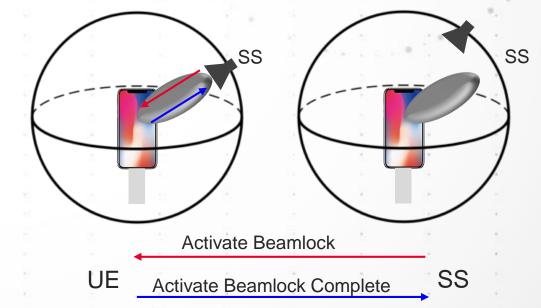
KEYSIGH TECHNOLOGIES


3GPP UE Test Requirements: Radiated

UE BEAMLOCK FUNCTION (UBF)

3GPP TS 38.521-2 (Radiated) – UE FR2

Without UE Beamlock Function (UBF), the UE keeps forming the beam towards the SS


 Required for Spherical Coverage, TX & RX Beam Peak Searches, EIS, EIRP measurements

The **UBF** is intended for making the UE to lock the UE antenna pattern once it has formed a beam towards the base station (SS) direction

Required for <u>TRP</u> measurements

 Recommended to prevent the beam from moving when performing measurements at low SNRs

Keysight OTA Solutions for mmWave UE Test

FROM R&D TO CONFORMANCE TO CARRIER COMPLIANCE

UE Calibration / Array Calibration / Functional / Protocol Signaling / Performance / Demod tests

Compact Antenna Test Range (CATR) or IFF

- Multiple sizes
- Single AoA
- Indirect Far-field
- 1x dual polarized probe

Black-box testing - 3GPP Approved Solution for RF Test

Antenna / RF Parametric / TRP & TIS / Functional (incl. beam tracking) / Protocol testing / Throughput (clean channel)

- Multiple AoA
- Far-field
- Far-field
- 3-4 dual polarized probe
- 45° 2D arch
- Benchtop installation

Functional (beam forming/ Protocol testing

3D MPAC

- Multiple AoA
- Far-field
- 4 out of 6 X-polarized probes
- 180° basic 3D or sectorized

Performance test (with fading – 38.901) / RRM (HO & Throughput) / Virtual drive test / Beam Management

© Keysight Technologies 2018 61

3GPP Conformance Test Solution for gNB

KEY VALUES

5G Testbed Hardware

Solution Value

- Validated gNB conformance tests
- Test Automation Platform enables testing over wide range of conditions
- Flexible solution upgradable as standard continues to evolve

Steps	× Test Plan Antenna_Patter			× Step Settings	
۹	+ — 🚣 ⊫Run 🖬 🖬	Repeat - 1:	2955.96 s remaining	Instruments	
SG DVT Measurement 3 GGPP 38.141	Step Name			+	
6.2 Basetation Output Power 6.3.1 Transaction Reveals 6.5.1 Frequence Error 6.5.7 Modulation Quilly 6.6.2 Occupied Bandwith 6.6.4 Operating Band Utimathed Emissions 6.6.3 Transmitter Spurious Emissions 6.7.1 Transmitter Intermodulation 4.1 Transmitter Teamodulation	Add Add Child Add Add Child	nge) - Elevation Sweep 271.40 s nge) - Azimuth Sweep 271.40 s ner Movement Pass 0.58 s	SG DVT Massurement / Antenna Pattern SG DVT Massurement / Antenna Pattern Flow Control / Sweep Loop (Rango) Flow Control / Sweep Loop (Rango) 1 SG DVT Massurement / Antenna Pattern SG DVT Massurement / Antenna Pattern / SG DVT Massurement / Antenna Pattern /	Co Frequency 28 GH Channel Span 150 M Integration Bandwidth 140 M An - Vsa Settings Fe Preset 2 An Use Setup File 2	
Antenna/Positioner Manual Movement Antenna/Positioner Movement Configure EVM/Power	Add Add Child Add Add Child Add Add Child	? _ 🗆 🗙 🚝 5G NR = Koysight 8	9600 VSA Software	Input Kange - 14 de Frame Trigger Is Present - Trigger Setting	, -
File Template Catting		File Edit Control	Source Input MeasSetup Trace Markers Window U fault 🔹 : 🔵 🎟 🖧 : : 🔯 🏭 - : : 🗞 🗟 🔽 🗍		
× z y		Power(clBm) 1.9 4.52 -2.81 -10.1 Materials	And And Branning a	• ×	Read 23852 avv Read Learner 14 bears 14

5G Testbed Software

KEYSIGH TECHNOLOGIE

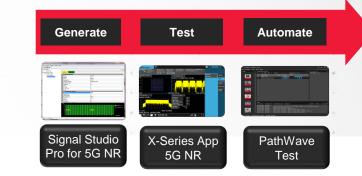
5G Non-Signaling mmWave Transceiver OTA Solution

COVERING THE 28 AND 39 GHZ MMWAVE BANDS

Wideband Transceiver Test Solution

- One Vector Signal Analyzer (VSA), one Vector Signal Generator (VSG) in 2U form factor saves precious rack space
- Simultaneous signal generation and analysis with independent frequency and power
- Two bi-directional IF ports
- Six RF ports for multiple device testing

mmWave Transceiver, 28 GHz and 39 GHz

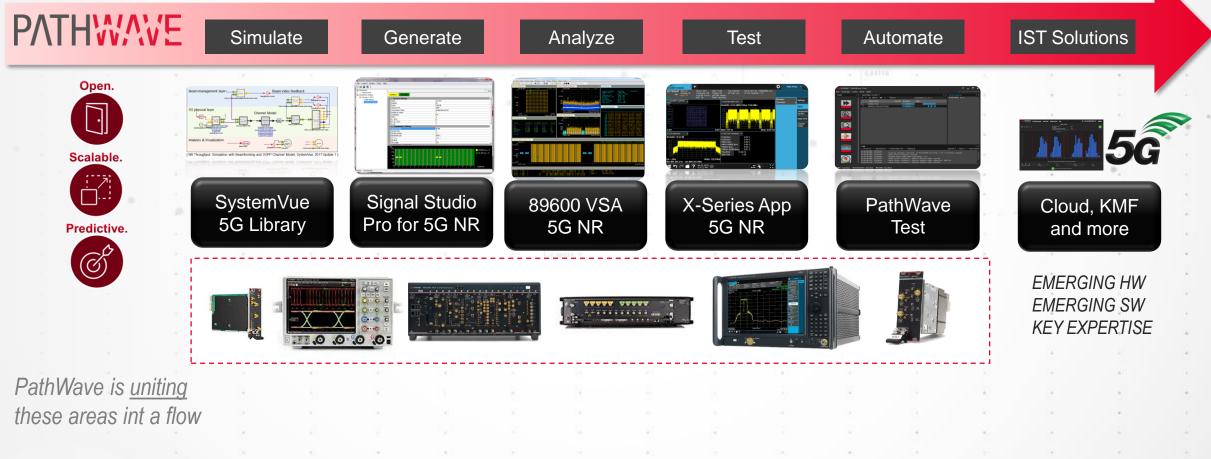

- Tunable between 24 GHz and 43.5GHz bands
- EVM < 1% (depending on number of component carriers)
- Two full duplex ports

Software

- 5G NR and 5G TF measurements based on X-Series measurement applications integrated in the wideband transceiver
- Keysight Signal Studio applications for signal creation

mmWave RF Performance Test Solution

- Over-the-air (OTA) characterization and validation of mmWave device under test.
- EIRP, TRP, TRS, RF parametric measurements



5G Software: "First in 5G" & full use of "Automation"

ACROSS ENTIRE PRODUCT DESIGN CYCLE

5G DVT

KEYSIGHT TECHNOLOGIES